DEPARTMENT OF ECE
WEST GODAVARI INSTITUTE OF SCIENCE & ENGINEERING

PRAKASARAOPALEM, AVAPADU, TADEPALLIGUDEM, W.G.DIST, A.P., INDIA

VLSI
LAB MANUAL
Prepared

by
K.SUDHA RANI

Assistant professor

(R-20)

111-B.Tech :1-Sem
ELECTRONICS & COMMUNICATION ENGINEERING

WEST GODAVARI INSTITUTE OFSCIENCE & ENGINEERING
Approved by AICTE & Affiliated to INTU Kakinada.
Prakasaraopalem, Avapadu, Tadepalligudem, W.G.Dist, A.P., INDIA

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Department:ECE

WEST GODAVARI INSTITUTE OF SCIENCE & ENGINEERING
Prakasaraopalem, Avapadu, Tadepalligudem, W.G.Dist, A.P., INDIA

INSTITUTE VISION AND MISSION

Vision of the Institution:

Promote academic excellence, research, innovation, and entrepreneurial skills to

produce graduates with human values and leadership qualities to serve the nation

Mission of the Institution:

Provide student-centric education and training on cutting-edge technologies to
make the students globally competitive and socially responsible citizens. Create an
environment to strengthen the research, innovation and entrepreneurship to solve

societal problems.

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



VLSI (Very-Large-Scale Integration) LABORATORY MANUAL
(R20) Il —B. Tech., II-Semester

Index

S. No. Name of the Experiment Date Marks Signature

Design and implementation of Realization

1 of Logic gates
Design and implementation of 4-bit ripple
2 carry and carry look ahead adder using

behavioral, dataflow and structural modeling

Design and implementation of a) 16:1 mux

3 through 4:1 mux b) 3:8 decoder realization
through 2:4 decoder
n Design and implementation of 8:3 encoder
5 Design and implementation of Flip-Flops
Design and implementation of 8-bit
6. synchronous up-down counter
Design and implementation of
7. universalgates
Design and implementation of an
8. inverter
9. Design and implementation of full adder
10. Design and implementation of full subtractor
11 Design and Implementation of Decoder
12. Design and implementation of D-latch

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
111 Year — Il Semester
VLSI DESIGN LAB (R20)

List of Experiment
PART (A): FPGA Level Implementation (Any Seven Experiments)
Note 1: The students need to develop Verilog /VHDL Source code, perform simulation
using relevant simulator and analyze the obtained simulation results using necessary
Synthesizer
Note 2: All the experiments need to be implemented on the latest FPGA/CPLD Hardware in
the Laboratory
1. Realization of Logic gates
Design and Implementation of the following:
2. 4-bit ripple carry and carry look ahead adder using behavioral, dataflow and structural modeling
3. a) 16:1 mux through 4:1 mux
b) 3:8 decoder realization through 2:4 decoder
4. 8:3 encoder
5. 8-bit parity generator and checker
6. Flip-Flops
7. 8-bit synchronous up-down counter
8. 4-bit sequence detector through Mealy and Moore state machines.
EDA Tools/Hardware Required:
1. EDA Tool that supports FPGA programming including Xilinx Vivado /Altera (Intel)/ Cypress/Equivalent
Industry standard tool along with corresponding FPGA hardware.
2. Desktop computer with appropriate Operating System that supports the EDA tools.
PART (B): Back-end Level Design and Implementation (Any Five Experiments)
Note: The students need to design the following experiments at schematic level using CMOS logic and verify the
functionality. Further students need to draw the corresponding layout and verify the functionality including
parasites. Available state of the art technology libraries can be used while simulating the designs using Industry
standard EDA Tools.
Design and Implementation of the following
la. Universal Gates
1b. An Inverter
2. Full Adder
3. Full Subtractor
4. Decoder
5. D-Flip-flop
EDA Tools/Hardware Required:
Mentor Graphics Software / Cadence/Synopsys/Tanner or Equivalent Industry Standard/CAD Tool.
Desktop computer with appropriate Operating System that supports the EDA tool

WEST GODAVARI INSTITUTE OF SCIENCE & TECHNOLOGY



INSTRUCTIONS TO THE STUDENTS

1. Students should come with thorough preparation for the experiment to be conducted.
2. Students should take prior permission from the concerned faculty before availing the leave.
3. Students should come with formals and to be present on time in the laboratory.

4. Students will not be permitted to attend the laboratory unless they bring the practical
record fully completed in all respects pertaining to the experiment conducted in the
previous class.

5. Students will be permitted to attend laboratory unless they bring the observation book
fully completed in all respects pertaining to the experiment conducted in the present class.

6. They should obtain the signature of the staff-in-charge in the observation book after
completing each experiment.

7. Practical record and observation book should be maintained neatly.

WEST GODAVARI INSTITUTE OF SCIENCE & TECHNOLOGY



Electronics & Communication Engineering
Course Overview:

This course gives knowledge about the design, analysis, simulation of circuits used as building blocks in Very
Large Scale Integration (VLSI) devices. Students can apply the concepts learnt in the lectures towards design of
actual VLSI subsystem all the way from specification, modeling, synthesis and physical design. This lab
provides hands-on experience on implementation of digital circuit designs using HDL language, which are

required for development of various projects and research work.

Objectives:

The course should enable the students to:

The ability to code and simulate any digital function in Verilog HDL.

Know the difference between synthesizable and non-synthesizable code.
Understand library modeling, behavioral code and the differences between them.
Understand the differences between simulator algorithms.

Learn good coding techniques per current industrial practices.

o o~ wnDhPE

Understand logic verification using Verilog simulation.

Course Qutcomes:

After completion of the course, the student will be able to:

Describe Verilog hardware description languages (HDL).
Design Digital Circuits in Verilog HDL.

Write behavioral models of digital circuits.

Write Register Transfer Level (RTL) models of digital circuits.
Verify behavioral and RTL models.

Describe standard cell libraries and FPGAs.

Synthesize RTL models to standard cell libraries and FPGAs.

© N o o &~ w0 Db PE

Implement RTL models on FPGAs and Testing & Verification.

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



ELECTRONICS AND COMMUNICATION ENGINEERING

Electronic design automation (EDA) or electronic computer-aided design software (ECAD)
designs and develops electronic systems such as printed circuit boards (PCBs) and integrated
circuits (ICs). It allows designers to build out different alternatives and options and compare them
to each other. It also generates manufacturing documentation as part of the specification used to
source, fabricate, and produce PCBs.

The rapidly growing EDA industry is best understood by looking at the definition of EDA.

Electronics includes anything electronic, from computer chips and cell phones to controls for
automobiles, etc. Everything made by the electronics industry results from designers using EDA
tools and services.

Design is the part of the production cycle where creativity, ingenuity, and new ideas are most
valued. Designers build models to understand the behavior and complex interactions of millions of
constituent parts in their designs to ensure completeness, correctness, and manufacturability of the
final product. Many of the designers in this field include electrical and software engineers.

Automation demonstrates the increasing complexity in the electronics industry today. This
complexity is enabled by Moore's Law (which states that the number of transistors in integrated
circuits doubles every 18 months), which drives the need for automation. Engineers need to
validate their concepts, model and analyze their designs, and identify and eliminate problems
before making production commitments.EDA helps ensure correct designs.

Very Large Scale Integration (VLSI)

VLSI is the process of creating an integrated circuit (IC) by combining thousands of transistors
into a single chip. VLSI began in the 1970s when complex semiconductor and communication
technologies were being developed. Before the introduction of VLSI technology most ICs had a
limited set of functions they could perform.

The functionality of electronics equipment’s and gadgets has achieved a phenomenal while their
physical sizes and weights have come down drastically. The major reason is due to the rapid
advances in integration technologies, which enables fabrication of millions of transistors in a
single Integrated Circuit (1C) or chip. IC is a device having multiple transistors with interconnects
manufactured on a single silicon substrate. Integration with a complexity of 10’s of transistors is
called Small Scale Integration, with 100’s is Medium Scale Integration (MSI), with 1000’s is
Large Scale Integration (LSI), with 10,000 it is Very Large Scale Integration (VLSI) Systems of
systems can

be implemented in a VLSI IC. However, with this rise in functionality of VLSI ICs, design
problem has become huge and complex.

To address this complexly issue, after the design specifications are complete almost all the other
steps are automated using CAD tools. However, even designs automated using CAD tools may

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



have bugs. Also, due to extremely large size of the design space it is not possible to verify
correctness of the design under all possible situations. So technique are required that can verify,
without exercising exhaustive input-output combinations, that the design meets all the input
specifications; this technique is called formal verification. In VLSI designs millions of transistors
are packed into a single chip. This leads to manufacturing defects and all the chips need to be
physically tested by giving input signals from a pattern generator and comparing responses using a
logic analyzer; this process is called Testing. So, in the process of manufacturing a VLSI IC there
are three broad steps: Design-Verification-Test.

VLSI ICs can be divided into analog, digital or mixed-signal (both analog and digitalon the same
chip) based on their functionality.

o Digital 1Cs can contain logic gates, flip-flops, multiplexers. Work using binary
mathematics to process "one" and "“zero" signals.

o Analog ICs, such as current mirrors, voltage followers, filters, OPAMPs etc.
work by processing continuous signals.

o When single IC has both analog and digital components it is called mixed

signal IC e.g, Analog to Digital Converter (ADC).

The automation algorithms and CAD tools are mainly available for digital ICs because
transformation of design specifications to silicon implementation can be accomplished using
logical procedures (which can be converted to algorithms and tools). However, most of the analog
circuits design is like an “art” which is best performed by designers with “aid” of some CAD tools
(which provides feedback to designer if the manual design is progressing fine etc.)

VLSI Design flow

The VLSI IC circuits design flow is shown in the figure below.

o Specifications comes first, they describe abstractly the functionality, interface,
and the architecture of the digital IC circuit to be designed.

o Architectural design is then created to analyze the design in terms of
functionality, performance, compliance to given standards, and other specifications.

o RTL Description is done using HDLs. This RTL Description is simulated to
test functionality. From here onwards we need the help of EDA tools.

o RTL Description is then converted to a gate-level netlist using logic synthesis

tools. A gate-level net list is a Description of the circuit in terms of gates and connections between
them, which are made in such a way that they meet the timing, power and area specifications.

o Finally a physical layout is made, which will be verified and then sent to
fabrication.

The Figure provides a more simplified view of the VLSI design flow, taking into account the various
representations, or abstractions of design - behavioral logic, circuit and mask layout. Note that the
verification of design plays a very important role in every step during this process. The failure to properly
verify a design in its early phases typically causes significant and expensive re-design at a later stage,
which ultimately increases the time-to-market.

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Specifications

I

Architecture

I

RTL Design
|

Front end Logic Synthesis

Physical Layout

Back end Physical Verification

Fabrication

I

Manufacturing Test

Figure 1 VLSI Design Flow

In the following, we will examine design methodologies and structured approaches which have
been developed over the years to deal with both complex hardware and software projects.
Regardless of the actual size of the project, the basic principles of structured design will improve
the prospects of success. Some of the classical techniques for reducing the complexity of IC design

are: Hierarchy, regularity, modularity and locality.

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



DESIGN STYLES

In 1980s when industry observed the possibility of automating the VLSI physical design using
CAD tools, a new design methodology has been introduced. This new design methodology was called
semi-custom VLSI design, where the design on silicon is customized as per the required application,
reducing the design time and cost involved.
In comparison with full custom VLSI where the complete layout will be hand drawn and every cell is
designed as per the requirements the semi-custom has the following advantages.
. Separated design approach, front end and back end
. Reduced cost as the basic cells are reused
. Less design turnaround time.

In today ASIC industry the design is portioned into front end and back end as explained below.

1. Frontend

a. Enter the design in one standard format (which EDA tools can understand)
b. Analyzing the requirements and high level design (identifying various blocksin design)
c. RTL design evolving the necessary micro architecture for the each block

d. VHDL, Verilog, other HDLs, Netlist etc.

e. Developing necessary test benches for functional verification.

f. Simulation and model verification using standard simulators

g. Integration of all the blocks and top level simulation.

2. Back end

a. Synthesizing the design, fixing any bugs (if any part of code is notsynthesizable)
b. Floor planning as the targeted silicon area

c. Invoking the ASIC back end tools (Mapping extracted Netlist cells totechnologyspecific
cells)

d. Place and root as per the required timing and clock constraints

e. Extraction of models from synthesis outputs

f. Timing simulation and functional verification

g. Sending the design to the FAB and getting the chip manufactured

Introduction to HDL

This section is a brief introduction to hardware design using a Hardware Description Language (HDL).
A language describing hardware is quite different from C, Pascal, or other software languages. A
computer program is dynamic, i.e., sharing the same resources, allocating resources when needed and
not always optimized for maximum speed, optimal memory management, or lowest resource
requirements. The main focus is functionality, but it is still not uncommon that software programs can
behave quite unexpected. When problems arise, new versions of the programs are distributed by the
vendor, usually with a new version number and a higher price tag. The demands on hardware design are
high compared to software. Often it is not possible, or at least very tricky, to patch hardware

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



after fabrication. Clearly, the functionality must be correct and in addition how the code is written will
affect the size and speedof the resulting hardware. Each mm2 of a chip costs money, lots of money. The
amount of logic cells, memory blocks and input/output connections will affect the sizeof the design and
therefore also the manufacturing cost. A software designer using a HDL has to be careful. The degrees
of freedom compared with software design have dramatically increased and must be taken into account.

Hardware description languages such as Verilog differ from software programming languages because
they include ways of describing the propagation time and signal strengths (sensitivity). There are two
types of assignment operators; a blocking assignment (=), and a non-blocking (<=) assignment. The non-
blocking assignment allows designers to describe a state-machine update without needing to declare
and use temporary storage variables. Since these concepts are part of Verilog's language semantics,
designers could quickly write descriptions of large circuits in a relatively compact and concise form. At
the time of Verilog's introduction (1984), Verilog represented a tremendous productivity improvement
for circuit designers who were already using graphical schematic capture software and specially written
software programs to document and simulate electronic circuits.

The designers of Verilog wanted a language with syntax similar to the C programming language, which
was already widely used in engineering software development. Like C, Verilog is case-sensitive and has
a basic preprocessor (though less sophisticated than that of ANSI C/C++). Its control flow keywords
(iflelse, for, while, case, etc.) are equivalent, and its operator precedence is compatible with C. Syntactic
differences include: required bit-widths for variable declarations, demarcation of procedural blocks
(Verilog uses begin/end instead of curly braces {}), and many other minor differences. Verilog requires
that variables be given a definite size. In C these sizes are assumed from the ‘type' of the variable (for
instance an integer type may be 8 bits).

A Verilog design consists of a hierarchy of modules. Modules encapsulate design hierarchy, and
communicate with other modules through a set of declared input, output, and bidirectional ports.
Internally, a module can contain any combination of the following: net/variable declarations (wire, reg,
integer, etc.), concurrent and sequential statement blocks, and instances of other modules (sub-
hierarchies). Sequential statements are placed inside a begin/end block and executed in sequential order
within the block. However, the blocks themselves are executed concurrently, making Verilog a dataflow
language.

Verilog's concept of ‘wire' consists of both signal values (4-state: "1, 0, floating, undefined") and signal
strengths (strong, weak, etc.). This system allows abstract modeling of shared signal lines, where
multiple sources drive a common net. When a wire has multiple drivers, the wire's (readable) value is
resolved by a function of the source drivers and their strengths.

A subset of statements in the Verilog language is synthesizable. Verilog modules that conform to a synthesizable
coding style, known as RTL (register-transfer level), can be physically realized by synthesis software. Synthesis
software algorithmically transforms the (abstract) Verilog source into a netlist, a logically equivalent description
consisting only of elementary logic primitives (AND, OR, NOT, flip- flops, etc.) that are available in a specific
FPGA or VLSI technology. Further manipulations to the netlist ultimately lead to a circuit fabrication blueprint
(such as a photo mask set for an ASIC or a bitstream file for an FPGA). HDL simulators are better than gate
level simulators for 2 reasons: portable modeldevelopment, and the ability to design complicated test
benches that react to outputs from the model under test. Finding

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



model for a unique component for your particular gate level simulator can be a frustrating task; with an
HDL language you can always write your own model. Also most gate level simulators are limited to
simple waveform based test benches which complicate the testing of bus and microprocessor interface
circuits.

RS

X Verilog is a great low level language. Structural models are easy to design and
Behavioral RTL code is pretty good. The syntax is regular and easy to remember. It is the fastest
HDL language to learn and use. However Verilog lacks user defined data types and lacks the
interface-object separation of the VHDL's entity- architecture model.

X/

x5 VHDL is good for designing behavioral models and incorporates some of the modern
object oriented techniques. It's syntax is strange and irregular, and the language is difficult to use.
Structural models require a lot of code that interferes with the readability of the model.

Xilinx Manual:

1. Introduction

Xilinx Tools is a suite of software tools used for the design of digital circuitsimplemented using Xilinx
Field Programmable Gate Array (FPGA) or Complex Programmable Logic Device (CPLD). The
design procedure consists of (a) design entry, (b) synthesis and implementation of the design, (c)
functional simulation and d)testing and verification. Digital designs can be entered in various ways
using the above CAD tools: using a schematic entry tool, using a hardware description language (HDL)
— Verilog or VHDL or a combination of both. In this lab we will only use the design flow that involves
the use of VerilogHDL.

The CAD tools enable you to design combinational and sequential circuits starting with Verilog HDL
design specifications. The steps of this design procedure are listedbelow:

1. Create Verilog design input file(s) using template driveneditor.
Compile and implement the Verilog designfile(s).
Create the test-vectors and simulate the design (functional simulation) withoutusing aPLD
(FPGA orCPLD).
Assign input/output pins to implement the design on a targetdevice.
Download bitstream to an FPGA or CPLDdevice.
Test design on FPGA/CPLDdevice
Verilog input file in the Xilinx software environment consists of the following segments:

wmn

>ooa

Header: module name, list of input and output ports.

Declarations: input and output ports, registers and wires.
Logic Descriptions: equations, state machines and logic functions.
End: end module

Pobhd P

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



2. Creating a NewProject

Xilinx Tools can be started by clicking on the Project Navigator Icon on the Windows desktop. This
should open up the Project Navigator window on your screen. This window shows (see Figure 1) the
last accessed project.

E ISE Project Navigator {M.53d) - C:\Documents and Settings' Administrator\My Documents'School'Digital CII'MS\H’ =5 l(]
3% File Edit View Project Source Process Tools Window Layout Help A Qlﬂ
ID23E@ [ labbx[ea] Al -2 ,RRlzaasl2e)ls 19
Den SEE AR Y ‘.\ B-be 0;5:::}/ = 0_gate Project Status =
[ {8 Implementation M Simuiation 6 [2) 108 Properties Project File: or_gate.xise Parser Errors: No Errors
(El Hierarchy I 5 @ N!ot?lule Level U.tilization Module Name: o_gate Implementation State: |Placed and
8"5] ygi or_gate ! @ Timing Constraints Routed
- Pinout Report
I =3 xcas‘;so Spq208 c) @ 5 Target Device: xc3s50-5pq208 eErrors: No Errors
oh nﬂ o_gate (o_gate.v) [2) ClockReport
= i | @Y static Timing Product Yersion: | ISE 12.1 «Warnings: Mo Warnings
é—' é - Errors and Warnings Design Goal: Balanced *Routing All Signals
= e [E) Parser Messages Results: Completely
[E) synthesis Messages Routed
2 m @ Translation Messages - > e
— [ Map Messages Design Strategy: | Xilinx Default *Timing
=X locked Constraints:
! [E) Place and Route Messages lrlachedt Sithobitteid
[2) Timing Messages Environment: System Settings *Final Timing 0 (Timing | |
[ Bitgen Messages b Score: Reoort
4 [E) Al Implementation Messages
» | €2 NoProcesses Running [ Detailed Reports
% Processes: o_gate I [2) Synthesis Report Device Utilization Summary -1
+ — — [2) Translation Repart e " TR
.;{: X Design Summary/Reports B Man Darork LI Logic Utilization Used | Available | Utilization | Note(s)
—{: g B::’rggo'fs";tr‘:;ts Design Properties Mumber of 4 input LUTs 1 1,536 1%
v i Enable Message Filtering Number of occlipied Slices 1 763 1%
== RO synthesize - x5T Optional Design Summary Contents ey o ocoplec e 2
T2 Implement Design Show Clock Repart Nurber of Slices containing onl 1 1 100%
P g.only.
)  Generate Programming File [ Show Failing Constraints related logic
% Configure Target Device 0 SROW Warmings Number of Slices containing [1} 1 0%
€ Analyze Design Using ChipScope [0 Show Errors unrelated logic
Total Number of 4 input LUTs 1 1,536 1%
Number of bonded I0Bs 3 124 2% _I
-
=5 Start B3 Design I U Files ] B Libraries] [E 1SE Design Suite InfoCenter l = Design Summary
Console <08 X

i) INFO:HDLCompiler:1062 - Parsing Verilog file "C:/Documents and Settings/Administrator/My Docuwents/School/Digital Circuits/;l
A INFO:ProjectMgnt: 656 - Parsing design hierarchy completed successfully.
Launching Design Swmmary/Report Viewer...
-
»

RIE———]

[Z] console m Errors I A\ Warnings I 6 Find in Files Resultsl

Figure 2: Xilinx Project Navigator window (snapshot from Xilinx ISE software)
Openinga project

Select File->New Project to create a new project. This will bring up a new project window (Figure 2)
on the desktop. Fill up the necessary entries as follows:

) ProjectName:  Write the name of your newproject

) Project Location: The directory where you want to store the new project (Note: DO
NOT specify the project location as a folder on Desktop or a folder in the Xilinx\bin directory. Your
H: drive is the best place to put it. The project location path is NOT to have any spaces in it eg:
C:\Nivash\TA\new lab\sample exercises\o_gate is NOT to be used) Leave the top level module type

as HDL.Example: If the project name were “o_gate”, enter “o_gate” as the project name andthen click
“Next”.

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



ToplLevel Souce Type
| HOL

[Moreinic ] Back [ mew> ] [_Gencsl ]

Figure 2: New Project Initiation window (snapshot from Xilinx ISE software)

Clicking on NEXT should bring up the following window:

ES New Project Wizard - Device Properties

Select the Device and Design Flow for the Project

| Property Name Value
| Product Category LAl v
Family Spartan3E v
| Device |XC3S250E ~
Package |CP132 v
[ Speed = v
[ Top-Level Source Type ;I—IEI 7?\
Synthesis Tool ?<§I vH plt{\»" ‘erilog) \ff‘
[ Simulator ;iModeIsim-XE Yerilog ﬂvf‘
| Enable Enhanced Design Summary
Enable Message Filtering |
; Display Incremental Messages | Ll
(e J[tow ] [ Cores ]

Figure 3: Device and Design Flow of Project (snapshot from Xilinx ISEsoftware)
For each of the properties given below, click on the ‘value’ area and select from thelist of values

thatappear.
) Device Family: Family of the FPGA/CPLD used. In this laboratory we will beusing
the Spartan3EFPGA’s.
) Device: The number of the actual device. For this lab you may enter XC3S250E
" (this can be found on the attached prototyping board)
o Package: The type of package with the number of pins. The Spartan FPGA used inthis lab

is packaged in CP132package.
Speed Grade: The Speed grade is“-4”.
Synthesis Tool: XST[VHDL/Verilog]
Simulator: The tool used to simulate and verify the functionality of the design. Modelsim

simulator is integrated in the Xilinx ISE. Hence choose “Modelsim-XE Verilog” as the simulator or
even Xilinx ISE Simulator can beused.

° Then click on NEXT to save the entries.
WEST GODAVARI INSTITUTE OF SCIENCE & TECHNOLOGY



All project files such as schematics, netlists, Verilog files, VHDL files, etc., will be stored in a
subdirectory with the project name. A project can only have one top level HDL source file (or
schematic). Modules can be added to the project to create a modular, hierarchical design.

In order to open an existing project in Xilinx Tools, select File->Open Project to show the list of
projects on the machine. Choose the project you want and click OK.

Clicking on NEXT on the above window brings up the following window:

ES New Project Wizard - Create New Source

Create a New Source

Source File Type

1 Remove

Creating a new source to add to the project is optional. Only one new source can be created with the New Project Wizard.
Additional sources can be created and added to the project by using the "Project->New Source' command.

Existing sources can be added on the next page.

[ < Back ] I Next > ] [ Cancel ]

Figure 4: Create new source window (snapshot from Xilinx ISE software)

If creating a new source file, Click on the NEW SOURCE.
Creating a Verilog HDL input file for a combinational logic design

In this lab we will enter a design using a structural or RTL description using the Verilog HDL. You can
create a Verilog HDL input file (.v file) using the HDL Editor available in the Xilinx ISE Tools (or any
text editor).

In the previous window, click on the NEW SOURCE

A window pops up as shown in Figure 4. (Note: “Add to project” option is selected by default. If you do
not select it then you will have to add the new source file to the project manually.)

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



E=S New Source Wizard - Select Source Type

g P [Coregen & Architecture Wizard)
E)] Schematic

= State Diagram

Test Bench WaveForm
User Document
“erilog Module Eile name:
IA] Werilog Test Fisture

I i
g VHDL Module |o_gate.v }
™ v¥HDL Library Location:

WHDL Pack. -
% WHDL T::t Bagich {C:\Nivash\TA\new_lab\.samplejexercises\o_gate f E]

Add to project

< Back [ MNext > ] [ LCancel ]

Figure 5: Creating Verilog-HDL source file (snapshot from Xilinx ISE software)

Select Verilog Module and in the “File Name:” area, enter the name of the Verilog source file you are
going to create. Also make sure that the option Add to project is selected so that the source need not be
added to the project again. Then click on Next to accept the entries. This pops up the following window
(Figure 5).

In the Port Name column, enter the names of all input and output pins and specify the Direction
accordingly. A Vector/Bus can be defined by entering appropriate bit numbers in the MSB/LSB
columns. Then click on Next>to get a window showing all the new source information (Figure 6). If
any changes are to be made, just click on <Back to go back and make changes. If everything is
acceptable, click on Finish

> Next > Next > Finish tocontinue.

E= New Source Wizard - Define Module [Z] - @
Module Name |o_gate
| Port Name Direction Bus MSB LSB A |
a linput v [
b Einpu! v [
2 ETT N (]
linput v [
linput ~0O
ginpul v D
finput v [
éinput v [
linput v [
|input v [
linput ~0O
= = |
[ < Back ] [ Next > ] [ Cancel ]
— — E—

WEST GODAVARI INSTITUTEEGF SCIENCE & TECHNOLOGY



Figure 6: Define Verilog Source window (snapshot from Xilinx ISE software)

E= New Project Wizard - Project Summary @ =) @
Project Navigator will create a new project with the following specifications:
Project:
Project Nasuoe : o_gacte
Project Path: C:\NivashlTA\new_ labl\sample exercises\o_gatelo__gate

Top Level Source Type: HDL

Device:

Device Fsasuaaily: Sparcan3E
Device: xc3s2S0e
Package : cpl32
Speed: —q

Synthesis Tool: XST (VHDL/Verilog)
Sirmulatcor : Mode lsim—XE Verilog

Enhanced Design Swanary: enabled
Message Filtering: disabled
Display Incremental Messagess: disaoled

New Source:
Verilog Module or_gate.w

[ < Back ]l Einish ] [ Cancel ]

Figure 7: New Project Informationwindow(snapshot from Xilinx ISE software)

Once you click on Finish, the source file will be displayed in the sources window in the Project
Navigator (Figure 1).

If a source has to be removed, just right click on the source file in the Sources in Project window in
the Project Navigator and select Removein that. Then select Project -> Delete Implementation Data
from the Project Navigator menu bar to remove any relatedfiles.

Editing the Verilog source file

The source file will now be displayed in the Project Navigator window (Figure 8). Thesource.
Filewindowcanbeusedasatexteditortomakeanynecessarychangestothesourcefile. Allthe input/output pins will be
displayed. Save your Verilog program periodically by selectingthe File->Save from the menu. You can also
edit Verilog programs in any text editor andadd them to the project directory using “Add Copy Source”.

B 1se Pro TR
[ rFile Ede view Project =7 T
UL o> = ey
Dasign
§ [Viow: ©= 15) Implomerkation « A Swmulstion | &m || 2 S/ S/LIIIIIIIIIIIIIIIEI SIS I I LIS SIS IIIIIIIIII SIS IS EL IS IS I LI I
a) [rverarchy
sl =Y or_oat -
& a
<21 :
a -
2 Ze
- e
>
|
I
27
28 =n -
25
i 1 |
T St 3 Desion [T ries | TS Ubrariez] [=H 1SE Gesion Suke Infocenter ) Dosion Summary ©] o_gate.v (>
Console o <
Launching Design Suwmeary/ Report Viewers . .. =1
Started : “Launching ISE Text Editor to edit o_gate.v"
.F

R —— ]
(5] console [ @D Erors J IS Warnings | a8 Find in Fées Rosults |

Ln 26 col 1

Figure 8: Verilog Source code editor window in the Project Navigator (fromXilinx ISE softwarSﬂ

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



3. Functional Simulation of Combinational Designs

Adding the test vectors

To check the functionality of a design, we have to apply test vectors and simulate the circuit. In order to apply
test vectors, a test bench file is written. Essentially it will supply all the inputs to the module designed and will
check the outputs of the module. Example: For the 2 input OR Gate, thesteps to generate the test bench are as
follows:

In the Sources window (top left corner) right click on the file that you want to generate the test bench for and
select ‘New Source’

Provide a name for the test bench in the file name text box and select ‘Verilog test fixture’ among the file types
in the list on the right side as shown in figure 9.

E= New Source Wizard - Select Source Type E] O @

' [f) BMM File

<] IP (Coregen & Architecture Wizard)

T MEM File

| Schematic

“«.| Implementation Constraints File

' State Diagram File name:
| Test Bench WaveForm
=| User Document

v | Verilog Module Location:

;t: Xalgigr;:;:]::xlule ‘C:\Nivash‘\TA\new_Iab\sample_exercises\o_gale Q
YHDL Library

P | VHDL Package

‘e| VHDL Test Bench

o_gate_tb.y

Add to project

< Back [ Next > ] [ Cancel ]

Figure 9: Adding test vectors to the design (snapshot from Xilinx ISE software)

Click on ‘Next’ to proceed. In the next window select the source file with which you wantto associate the test

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



E= New Source Wizard - Associate Source E] 7f @

Select a source with which to associate the new source.

[ < Back ] [ Next > ] [ Cancel ]

Figure 10: Associating a module to a testbench (snapshot from Xilinx 1SEsoftware)

Click on Next to proceed. In the next window click on Finish. You will now be provided with a template for
your test bench. If it does not open automatically click the radio button next to Simulation .

= ISE Project Navigator (M.53d) - C:\Documents

@ File Edit View Project Source Process Tools
ID3E@| - |les DO X |0 @
Design <08 X
) | View: & {8} Implementation (~ M Simulation

=| | Hierarchy

g‘z ] TE] or_gate

= €3 xc3s50-5pq208
e @nun o_gate (o_gate.v)

r=l

You should now be able to view your test bench template.

Simulating and Viewing the OutputWaveforms

Now under the Processes window (making sure that the test bench file in the Sources window is
selected) expand the ModelSim simulator Tab by clicking on the add sign next to it. Double Click on
Simulate Behavioral Model. You will probably receive a complier error. This is nothing to worry about
—answer “No” whenasked if you wish to abort simulation. This should cause ModelSim to open. Wait for it to

complete execution. If you wish to not receive the compiler error, right click on Simulate Behavioral Model
and select process properties. Mark the checkbox next to “Ignore Pre- Complied Library Warning Check”.

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



[ ISE Project Navigator (M.53d) - C:\Documents and Settings\Administrator\My Documents\School\Digital Circuits\lab\Xilinx Tutorial\or _gate. =18l x|

[E) Fle Edt View Project Source Process Tools Window Layout Help =18 x|
D2V lsbbx[wa|slrram 2QAlzsaz|leels LI
| l

Design «0&8x | 25 module o_gate_th: =
lm:rﬁ&lwﬂmmﬁuwm ’ 26

— [Behavioral Il = 27 // Inputs

&l | 28 reg a;

fyz] | Hierarchy ° 29 reg b:

A 8] or_gate 30

oo | 5 €3 xc3s50-5pq208 31 // Outputs

| = [# o_gate_th(o_gate_tb.v) 2 32 wire z:

_@ uut - o_gate (o_gate.v) - 33

a A 34 // Instantiate the Unit Under Test (UUT)

.ﬂ % 35 o_gate uut (

hend 36 .afa),

= Al 32 b(b),

’ » 38 wziz)
39 ):

== 40

» | €2 NoProcesses Running 41 initial begin

— 42 // Initialize Inputs

L:?c Processes: o_gate_tb I 43 a=0;

= £ ModelSim Simulator 44 b = 0;:

] ¥ Simulate Behavioral Model 45

% 46 // Wait 100 ns for global reset to finish

— 47 #100; =

- 48 a=0;
49 2+ I
50
51 // Wait 100 ns for global reset to finish
52 #100:
53 a=1; -
< = »
= st og Design [ ) Fles | [) Libraries| | = 15 Design Sute InfoCenter || | i Designsummary | (5] ogatev .|| [B) o_gatetbw [

Console «08& X
Started : "Launching ISE Text Editor to edit o_gate.v". _AJ
Started : "Launching ISE Text Editor to edit o_gate_th.v".

v

4 »

[5] console [@ Erors | I\ Warmings | 128 Find in Fles Resuks |

Ln25Col 1 Verilog

Figure 11: Simulating the design (snapshot from Xilinx ISE software)

Saving the simulation results

To save the simulation results, Go to the waveform window of the Modelsim simulator, Click on File -> Print to
Postscript -> give desired filename and location.

Notethatbydefault,the waveform is“zoomed in”tothenanosecondlevel. Use the zoom controls to display the

entire waveform.

Else a normal print screen option can be used on the waveform window and subsequentlystored in Paint.

WEST GODAVARI INSTITUTE OF SCIENCE & TECHNOLOGY



ﬁvmve - default @@@

Ele Edt Yew Insert Format Tooks Window
NEE& { RBD: A% || SHRH|| 4 | HF - iEBH PP RAE ||\ o/ QQ QK & («

L lo_gate tb_v/a ‘,_\
‘. /o_gate_tb_v/b
‘. Jo_gae_tb_v/z

Now | 1000000 ps I
e
| E7 | 2RI I~
0 ps to 1050 ns | Now: 1 us Delta: 0

Figure 12: Behavioral Simulation output WaveformSnapshot fromModelSim)

For taking printouts for the lab reports, convert the black background to white in Tools ->Edit Preferences. Then
click Wave Windows -> Wave Background attribute.

¥ Preferences

By Window | By Name | <]
Window List Wave Windows Color Scheme
Dataflow Windows cursorDeltaColor ﬁ Palette
List Windows foreground
Main Window gridColor
Memory Windows selectBackground
Active Process Window selectForeground
Objects Window textColor
Source Windows timeColor
Structure Windows wvectorColor
Locals Window 2

O text

Font

Choose...

Sample Text 01234567830

OK I Applyl Cancel

Figure 13: Changing Waveform Background in ModelSim

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Synthesis and Implementation of the Design

The design has to be synthesized and implemented before it can be checked for correctness, by running
functional simulation or downloaded onto the prototyping board. With the top- level Verilog file opened (can be
done by double-clicking that file) in the HDL editor window in the right half of the Project Navigator, and the
view of the project being in the Module view , the implement design option can be seen in the process view.
Design entry utilities and Generate Programming File options can also be seen in the process view. The
former can be used to include user constraints, if any and the latter will be discussed later.

To synthesize the design, double click on the Synthesize Design option in the
Processes window.

To implement the design, double click the Implement design option in the Processes window. It will go
through steps like Translate, Map and Place & Route. If any of these steps could not be done or done with
errors, it will place a X mark in front of that, otherwise a tick mark will be placed after each of them to indicate
the successful completion. If everything is done successfully, a tick mark will be placed before the
Implement Design  option.  If therearewarnings, one can see ¥ mark in front of the option indicating
that there are some warnings. One can look at the warnings or errors in theConsole window present at
the bottom of the Navigator window. Every time the design file is saved; all these marks disappear
asking for a fresh compilation.

[ 1SE Project Navigator (M.53d) - C:\Documents and Settings\Administrator\My Documents\School\Digital Circuits\lab\ orial =18{x|
[®) Fle Edit View Project Source Process Tools Window Layout Help =15 x|

IDaaa| |l X [0 o [ =[] aHARIAIEs a=lER]l> £ LI
Design : 08 x .

(] | view: & {5} Implementation ¢ M Simulation

] [Huerarchy |

& =] or_gate

= £ xc3sS0-5pq208
[Hd% o_gate (o_gate.v)

VONOUMDWN M

&l =
4
2 o 10
- ' 2 5
) » 12
- » 13
> 14
1s
16
» | €2 No Processes Running 17
— 18
B¢ | Processes: o_gate = Sl
t 20 /77 / / FEEIITLITZPEP 7028770777207 0027787 / 1121777
21 module o_gate(
7 22 input a,
4 logy 23 input b,
(&) Check Syntax 24 output z
€2  Generate Post-Synthesis Sim. 25 )z
= E2E) Implement Design 26 assign z = a | b:
# EAQ) Translate 27
# T2ED Map 28 endmodule
+ € Place & Route 29
Generate Programming File
58 Seowse bowamraf 2 TS| : _ 2

s Start @3 Design | L) Fies | [) Libraries| =5 ISE Design Suite InfoCenter = Design Summary B o_gate.v [x]

Console <085 X
Launching Design Swwwary/Report Viewer... |
Started : "Launching ISE Text Editor to edit o_gate.v".

4 »

[5] Console [@ Erors | 1\ Warmings | 86 Find in Files Resuks |

Ln26Col 18 Verilog

Figure 14: Implementing the Design (snapshot from Xilinx ISE software)

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



By double clicking it opens the top level module showing only input(s) and output(s) as shown below.

a3 Sources | g Snapshots | [ Linaries |BE Desion | |

No flow available

S Processes
< X Dotion Surmay | [ o_oste.nor
= Design Objects of Propertios
Top Level Symbol No object i selected
Nome Name Vahi
- [ESEE
H i To: e R Fraraes | W view oy Coteoary | EE View iy ams

(12,1641

Figure 15: Top Level Hierarchy of the design
By double clicking the rectangle, it opens the realized internal logic asshown below.

Xilinx - ISE - C:\Nivash\TA\new_lab\sample_exercises\o_gatelo_gate. ise - [o_gate.ngr]

Fle Edt Yiew Project Source Process Window Help =& X

BN A 5 N QRETED ¢ VERPPREML B A:BE DDA NGK vVEQI @ E BAALN OO
A o> < s X z R
souces x|

o_gate

913 Sources | gy Snapshots | P Libraries B Desipn

No flow available.

! Processes m
X Design Summary | [2) o_gate.ngr
Design Objects of Properties
o_gate No obiect is selected
Name Type ~ | [ Name Vahe
z Pin
2_imp_21 Instance v

] Console | @ Enors | 8\ Wamings | (I TclConsole | gg FindinFiles | [ View by Category | EH View by Name

[612,336]

Figure 16: Realized logic by the XilinxISE for the verilog code

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



EXPERIMENT-1

Design and Simulation of Realization of Logic gates using all the modeling styles and Synthesis of all the
logic gates using Verilog HDL

Aim: To Implement and verify the functionality of AND gate using Xilinx ISE

Apparatus required: Electronics Design Automation Tools used

e Xilinx ISE Simulator tool
e Xilinx XST Synthesis tool
e Xilinx Spartan FPGA Board
e JTAG cable
e Adaptor 5v/4A
Theory:

A logic gate is an idealized or physical device implementing a Boolean function; that is, it performs a logical

operation on one or more binary inputs, and produces a single binary output.

Pr re:

1. Double click on Xilinx Design Suite Icon.

2. Select new project in file menu. 3. Enter the project name and location as shown below and press Next .
4. Select the Family, Device, Package and speed as per the requirements and press Next

5. Create a new source by using new source icon or right click on the device/project folder to create new

source.

6. Select the appropriate source type and enter the file name in New Source Wizard window and press Next .
7. Enter the architecture name — dataflow/behavioral/structural, port name and select the direction. This will

create .v source file. Press Next and finish the initial project creation.
8. Write complete VHDL/Verilog code implementation and save.

9. Click on implementation and check for syntax using “Check syntax” option under synthesize tab. If any

error, edit and correct VHDL/Verilog code and repeat check syntax until zero errors.

10. Double click on ISIM simulator by selecting simulation mode to complete the functional simulation of

your design.

Part —B Hardware Interfacing Procedure :

1. Repeat the steps 1 to 10 from the procedure for software experiments .
WEST GODAVARI INSTITUTE OF SCIENCE & TECHNOLOGY



2. Make the connection between appropriate FRC’s of the FPGA board and the DIP switch connector of the
GPI1Ocard-2/

3. Make the connection between appropriate FRC’s of the FPGA board and the LED connector of the
GPI1Ocard-2.

4. Right click on the device and select “New Source”, Select the option “Implementation constraint File”
and provide the file name and click on next and then hit Finish. This creates an .ucf file.

5. Double click on the added .ucf file and assign the pin numbers to inputs and outputs referring to FRC
sheet using the syntax as shown.Save the constraint file.

6. Connect USB programmer for FPGA between FPGA kit and USB port of your computer.

7. Go to process window, select the VHDL or Verilog file and click on “configure target device”.
8. Click OK for the warning below.

9. Select boundary scan to impact the target device.

10. Right click on the impact window to establish a connection between system and FPGA by selecting
“INTIALIZE CHAIN” option.

11. Both prom device and FPGA device gets identified after step 10 and bypass the procedure to select only

FPGA which of main interest.
12. Now choose device 2(FPGA XC3S400) and hit ok to complete the impact.

13. Now right click on the device to assign a new .bit file by selecting an option “ASSIGN NEW
CONFIGURATION FILE™.
Boolean equations:

AND Gate:Y = (A.B)

OR Gate: Y = (A +B)

NAND Gate: Y = (A.B)’

NOR Gate: Y = (A+B)’

XOR Gate: Y=A.B’+ A’.B
XNOR Gate: Y =AB+ A’ B’
NOT gate: Y=A’

AND Gate - Block diagram:

[OLOGY

WEST GODAVARI A

B_




R - Truth Tabl

N ==1p~
ol oW
===l

Verilog program for AND gate:

module andg (A, B, Y);
input A, B;
output Y;
assignY =A & B;
endmodule

Veril nch program for AND :
module andg_tb;
reg A, B;
wire Y;
andg andgate(.A(A), .B(B),.Y(Y));
initial begin
A =1'b0;B= 1'b0;
#10 A =1'b0;B=1'b1;
#10 A =1'b1;B=1'b0;
#10 A =1'b1;B=1'b1;
#10
$finish;
end
always @(Y)
$display( "time =%0t \tINPUT VALUES: \t A=%b B =%b \t output value Y =%b",$time,A,B,Y);
endmodule

Wave Form:

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



R - Block diagram:

Y
R - Truth Tabl
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

module org (A, B, Y);
input A, B;
output Y;
assign Y =A|B;

endmodule

Verilog test bench program for AND gate:
module org_tb;
reg A, B;
wire Y;
andg andgate(.A(A), .B(B),.Y(Y));
initial begin
A =1'b0;B= 1'b0;
#10 A =1'00;B=1'b1;
#10 A =1'b1;B=1'b0;
#10 A =1'b1;B=1'b1;
#10
$finish;
end
always @(Y)
$display( "time =%0t \tINPUT VALUES: \t A=%b B =%b \t output value Y =%b",$time,A,B,Y);
endmodule
Wave form:

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



NAND - Block diagram:

R - Truth Tabl
A B Y
0 0 0
0 1 1
1 0 1
1 1 1
Veril rogram for nan
module nandg (A, B, Y);
input A, B;
output Y;
assign Y = ~(A & B);
endmodule
module nandg_tb;
reg A, B;
wire Y;
nandg nandgate(.A(A), .B(B),.Y(Y));
initial begin
A =1'b0;B= 1'b0;
#10 A =1'00;B=1'b1;
#10 A =1'b1;B=1'00;
#10 A=101;B=1b1;
#10 $finish;
end
always @(Y)
$display( "time =%0t \tINPUT VALUES: \t A=%b B =%b \t output value Y =%b", $time,A,B,Y);
endmodule
Wave Form:

4 fnandg_tb/A
« /nandg_tb/B

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



NOR - Block diagram:

A
1
B
NOR gate - Truth Table
A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Veril roaram for XOR :
module norg (A, B, Y);

input A, B;
output Y;
assignY =~(A | B);

endmodule

module norg_tb;
reg A, B;
wire Y;
norg norgate((A(A), .B(B),.Y(Y));
initial begin
A =1'b0;B= 1'b0;
#10 A =1'00;B=1'b1;
#10 A =1'b1;B=1'b0;
#10 A =1'b1;B=1'b1;
#10
$finish;
end
always @(Y)
$display( "time =%0t \tINPUT VALUES: \t A=%b B =%b \t output value Y =%b",$time,A,B,Y);
endmodule

Wave Form:

& /norg_tb/B

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



XOR - Block diagram:

Verilog program for XOR gate:

module xorg_dataflow (A, B, Y);
input A, B;
output Y;
assignY = A" B;
endmodule
module xorg_tb;
reg A, B;
wire Y;
xorg xorgate(.A(A), .B(B),.Y(Y));
initial begin
A =1'b0;B= 1'b0;
#10 A =1'00;B=1'b1;
#10 A =1'b1;B=1'b0;
#10 A =1'b1;B=1'b1;
#10
$finish;
end
always @(Y)
$display( "time =%0t \tINPUT VALUES: \t A=%b B =%b \t output value Y =%b",$time,A,B,Y);

endmodule
Wave Form:

@ /xorg_tb/B

1ho L i [

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



XNOR - Block diagram:

Verilog program for XNOR gate:

module xnorg_dataflow (A, B, Y);
input A, B;
output Y;
assignY =~(A"B);
endmodule
module xnorg_tb;
reg A, B;
wire Y;
xnorg xnorgate(.A(A), .B(B),.Y(Y));
initial begin

A =1'b0;B= 1'b0;

#10 A =1'00;B=1'b1;

#10 A =1'b1;B=1'b0;

#10 A =1'b1;B=1'b1;

#10

$finish;
end
always @(Y)
$display( "time =%0t tINPUT VALUES: \t A=%b B =%b \t output value Y =%b",$time,A,B,Y);

endmodule

Wave Form:

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



NOT - Block diagram:

A Y
NOT gate - Truth Table

A Y

0 1

1 0

Veri roaram for NOT :
module not_g (A, B, Y);

input A;

output Y;

assignY =~ A;

endmodule

Veril nch program for NOT X

module notg_tb;
reg A,
wire Y;
notg norgate(.A(A),.Y(Y));
initial begin
A =1'00;
#10 A=1'b1;
#10
$finish;
end
always @(Y)
$display( "time =%0t \tINPUT VALUES: \t A=%b output value Y =%b",$time,A,Y);
endmodule
Wave Form:

@ /notg_thjY 1'ho

S —  —
Result :

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



EXPERIMENT 2

HDL CODE FOR CARRY LOOK AHEAD ADDER

Aim
To design and simulate the HDL code for 4-bit ripple carry and carry look ahead adder using behavioural,
dataflow and structural modeling

Apparatus required: Electronics Design Automation Tools used

Xilinx ISE Simulator tool
Xilinx XST Synthesis tool
Xilinx Spartan FPGA Board
JTAG cable

Adaptor 5v/4A

Theory:
A carry-lookahead adder improves speed by reducing the amount of time required to determine carry bits. It

can be contrasted with the simpler, but usually slower, ripple carry adder for which the carry bit is
calculated alongside the sum bit, and each bit must wait until the previous carry has been calculated to
begin calculating its own result and carry bits. The carry-look ahead adder calculates one or more carry bits
before the sum, which reduces the wait time to calculate the result of the larger value bits. The CLA solves
the problem of delay it takes to propagate the carry, by calculating the carry signal in advance based on the
input signal . The working of this adder can be understood by manipulating Boolean expressions dealing
with full adder.

As Bs A, B, A, B, A, B
v v vy v v v v
Full Cs Full C; Full Cy Full Co
Adder Adder Adder Adder
v ! v !
53 52 Sl SG‘
Cy " Carry Lookahead Logic

|Generate, Propagate, Carry)

£ f tf f 1 f 1

A Bs A B2 Ay B Ao Bo

WEST GODAVARI INSTITUTE OF SCIENCE & TECHNOLOGY



B3 ; | )
A

e
B(2) —
A2

B{1) ; i )
All)

=
e

PE) -
P ID— SUMGE)
G2y
P2 &
T !D— 518 % (>3]
G2}
Pd1) =
—— —)D— SUNM)
S(1)
BP0 B
— !& SUBAOY
SO}

PG Generator

Tarry Generator

Figure Carry-look ahead Adder

Truth Table:

Sum G enerator

A B Cin |Cout [ Condition

0 0 0 0

0 0 1 0 No carry
generation

0 1 0 0

0 1 1 1

1 0 0 0 No carry
propagate

1 0 1 1

1 1 0 1

1 1 1 1 Carry generate

WEST GODAVARI INSTITUTE OF SCIENCE & TECHNOLOGY



Verilog Code
module p21(a,b,cin,sum,cout);input[3:0] a,b;
input cin;
output [3:0] sum;output cout;
wire p0,p1,p2,p3,90,91,02,93,c1,c2,c3,c4;assign p0=(a[0]"b[0]),
p1=(a[1]"b[1]),
p2=(a[2]"b[2]),
p3=(a[3]"b[3]);

assign g0=(a[0]&b[0]),
g1=(a[1]&b[1]),

92=(a[2]&b[2]),
93=(a[3]&b[3]);
assign cO0=cin, c1=g0|(p0&cin),
c2=01|(p1&g0)|(p1&p0&cin),
€3=02|(p2&91)|(p2&p1&g0)|(p1&pl&p0&cin),
c4=03|(p3&g2)|(p3&p2&g1)|(p3&p2&p1&g0)|(p3&p2&p1&p0&CIn);
assign sum[0]=p0”~cO,
sum[1]=p1~c1,
sum[2]=p2~c2,
sum[3]=p3”c3;
assign cout=c4;
endmodule

Test Bench:

module TestModule;
/I Inputs

reg [3:0] a;

reg [3:0] b;

reg cin;

I/l Outputs
wire [3:0] sum;
wire cout;

/I Instantiate the Unit Under Test (UUT)
CLA_Adder uut (

a(a),

-b(b),

.cin(cin),

.sum(sum),

.cout(cout)

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



);

initial begin

/I Initialize Inputs

a=0;

b=0;

cin=0;

// ' Wait 100 ns for global reset to finish
#100;

a=2y;

b =6;

cin=1;

// ' Wait 100 ns for global reset to finish
#100;

end

endmodule

Waveform:

F] EB | | 0 = AN W | TN | YR oy = L T EI a c = 2 ol L= R B | B L e

4,999,998 ps

5,
E
]
E

Result:

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



EXPERIMENT 3
Aim: To design the 16 x 1 Multiplexer using 4 x 1 MUX using Verilog and simulate the design

Apparatus required: Electronics Design Automation Tools used

Xilinx ISE Simulator tool
Xilinx XST Synthesis tool
Xilinx Spartan FPGA Board
JTAG cable

Adaptor 5v/4A

Block diagaram:

Ae—>] 16=1

A———  Multiplexer i

IO e OO O

oA

oOoro

NS ———ee——jOa
%

MmMaaE g oOooo

IfNAS e OO

I AA O 1O

rNAS JOoa

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



TRUTH TABLE:

INPUTS Output
Sop [ S1]S:2]8; Y
0O |0|0]|O Ag
0 |0]|]0]|1 Ay
0O |0|1]|0 Az
0 |0]1]1 Az
0O |1|0]|0 As
0 |1]|]0]|1 Ac
0O |1]|]1]|0 Ag
0 |1]|]1]|1 Az
1 |1]0|0]|O0 Ag
1 10|01 As
1 |0|1]|0 Aig
1 0|11 Aqs
1 |11|]0]0 Aqz
1 10|12 Asz
111|110 Aag
1 1|11 Ass

HDL Program File for 4:1 MUX [ MUX4X1.v]
module mux4tol gate(out,in,sel);
input [0:3] in;

input [0:1] sel,

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY




output out;

wire a,b,c,d,n1,n2,al,a2,a3,a4;
not n(nl,sel[1]);

not nn(n2,sel[0]);

and (al,in[0],n1,n2);

and (a2,in[1],n2,sel[1]);

and (a3,in[2],sel[0],n1);

and (a4,in[3],sel[0],sel[1]);
ororl(out,al,a2,a3,ad);
endmodule

HDL Program File for 16:1 MUX [ MUX16X1.v
module mux16tol(out,in,sel);

input [0:15] in;

input [0:3] sel;

output out;

wire [0:3] ma;

mux4tol_gate mux1(ma[0],in[0:3],sel[2:3]);
mux4tol_gate mux2(ma[1],in[4:7],sel[2:3]);
mux4tol_gate mux3(ma[2],in[8:11],sel[2:3]);
mux4tol_gate mux4(ma[3],in[12:15],sel[2:3]);
mux4tol_gate mux5(out,ma,sel[0:1]);
endmodule

HDL Test Bench File for 16:1 MUX [TESTMUX16.v]
module testmux_16;

reg [0:15] in;

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



reg [0:3] sel;

wire out;

mux16tol mux(out,in,sel);

initial

begin

$monitor("in=%b | sel=%b | out=%b",
in,sel,out);

end

initial

begin

in=16'1000000000000000; sel=4'b0000;
#30 in=16'00100000000000000; sel=4'b0001;
#30 in=16'00010000000000000; sel=4'b0010;
#30 in=16'00001000000000000; sel=4'b0011;
#30 in=16'00000100000000000; sel=4'b0100;
#30 in=16'00000010000000000; sel=4'b0101;
#30 in=16'00000001000000000; sel=4'b0110;
#30 in=16'00000000100000000; sel=4'b0111;
#30 in=16'00000000010000000; sel=4'b1000;
#30 in=16'b0000000001000000; sel=4'b1001;
#30 in=16'00000000000100000; sel=4'b1010;
#30 in=16'b0000000000010000; sel=4'b1011;
#30 in=16'b0000000000001000; sel=4'b1100;
#30 in=16'b0000000000000100; sel=4'b1101,;
#30 in=16'b0000000000000010; sel=4'b1110;

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



#30 in=16'b0000000000000001 ; sel=4'b1111;
end

endmodule

Waveform
Easimesen 0 T

D}Hi db -"‘.in\"ilyl 0 Q@ =E

Instances and Processes + O & X |Objects

] Float (P.58f) - [Defaultwcfg)

Instance and Prgl 7] File Edit View Simulation Window Layout Help

g::rmox DAE|L XDEX®|v o |

10101010
1011

1

1010

Result:

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY

Y
z
@

e[ 1 =@ b Eoon [

BEresn2r@RR x|t s 0




b) 3:8 decoder realization through 2:4 decoder

Aim: To design the 3:8 decoder realization through 2:4 decoder using Verilog and simulate the design
Apparatus required: Electronics Design Automation Tools used

Xilinx ISE Simulator tool
Xilinx XST Synthesis tool
Xilinx Spartan FPGA Board
JTAG cable

Adaptor 5v/4A

THEORY:

As a decoder is a combinational circuit takes an n-bit binary number and produces an output on one of 2n
output lines. A decoder is a multiple input, multiple output logic circuit that converts coded inputs into coded
outputs where the input and output codes are different. The enable inputs must be ON for the decoder to
function, otherwise its outputs assumes a ‘disabled’ output code word. Decoding is necessary in applications
such as data multiplexing, seven segment display and memory address decoding.

In a 2-to-4 binary decoder, two inputs are decoded into four outputs hence it consists of two input
linesand 4 output lines. Only one output is active at any time while the other outputs are maintained at logic 0
and the output which is held active or high is determined the two binary inputs Al and AO. The 3-to-8
decoders have an “Enable” input each
(designated ‘en” — one being of the active high and the other of the active low
type); these are connected to the most significant bit of the 4-b it input to form the4-to-
16 decoder. The 3-t0-8 decoder can again be formed in terms of two 2-to-4 decodersin
the same manner as shown in Figure

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Circuit Diagram:

9 * *
—9 a—
13podap 13p0dap
02 -0
o £

Truth Table:

Outputs
PP4 PP3

|

~ Inputs

()

Pwo -l clelcle o e

 O-| H BN BN

|

WWO olm o o|lo|lo o ©
,

o

W%o ol ~Slojlo o

e —
AO colo ol~lolo oo
‘ . - . - -
WO cloclo|~lo ole

] |1 i

Wﬁo oo ols|loln o &

_-— — — - —— -y

W !

alelojleo clelo|le m o

| o I MR p=i

-~ |

WVO oo ol eclolo o -
|

O xojHol~o| O =~

o |
,. - — —
|

N xleo i k=) o

= o o

o | i

O_-, X OO0 © S|™ |~ ™ =~
r— — — — e

mmo g [P Y IR R [P g SN

2X 4 Decoder

module dec2_4 (a,b,en);

output [3:0] a;

input [1:0]b; input en;

wire [1:0]bb;

WEST GODAVARI INSTITUTE OF SCIENCE & TECHNOLOGY



not(bb[1],b[1]),(bb[0],b[0]);
and(a[0],en, bb[1],bb[0]),(a[1],en, bb[1],b[0]),
(a[2].en, b[1],bb[0]),(a[3].en, b[1],b[0]);
endmodule

[ltest bench

module tst_dec2_4();

wire [3:0]a;

reg[1:0] b; reg en;

dec2_4 dec(a,b,en);

initial

begin

{b,en} =3'b000;

#2{b,en} =3'b001;

#2{b,en} =3'b011;

#2{b,en} =3'b101;

#2{b,en} =3'b111;

end

initial

$monitor ($time , "output a = %b, input b = %b ",
a, b);

endmodule

Verilog Code for 3 TO 8 DECODER

module dec3_8(pp,q.enn);
output[7:0]pp;

input[2:0]q;

input enn;

wire qq;

wire[7:0]p;

not(qq,a[2]);

dec2_4 g1(.a(p[3:0])..b(a[1:0])..en(qq));
dec2_4 g2(.a(p[7:4]).-b(a[1:0])..en(a[2]));
and g30(pp[0],p[0].enn);

and g31(pp[1],p[1].enn);

and g32(pp[2],p[2] .enn);

and g33(pp[3],p[3].enn);

and g34(pp[4],p[4].enn);

and g35(pp[5],p[5].enn);

and g36(pp[6],p[6].enn);

and g37(pp[7],p[7].enn);
endmodule

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Waveform

—‘\ File Edit View Simulation Window Layout Help
DPE|Z | XDEX®|0 o |dix D BEIS LR ALBLA|Riwa| ] ~|Q

3,000,0¢

__ 51000000 _—
————=

I I I R I

Result:

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



EXPERIMENT 4

Design of 8-to-3 encoder (without and with parity) usingVerilog HDL
Aim To design the 8x3 encoder using Verilog and simulate the design

Apparatus required:- Electronics Design Automation Tools used:-

Xilinx Spartan 3 FPGA
Xilinx ISE Simulator tool
Xilinx XST Synthesis tool
Xilinx Project Navigator 8.1i
JTAG cable

Adaptor 5v/4A

THEORY:

Anencoder is a combinational logic circuit that essentially performs a “reverse” of decoder functions. An encoder
has 2N input lines and N output lines. In encoder the output lines generate the binary code corresponding to
input value. An encoder accepts an active level on one of its inputs, representing digit, such as a decimal or octal
digits, and converts it to a coded output such as BCD or binary. Encoders can also be devised to encode various
symbols and alphabetic characters. The process of converting from familiar symbols or numbers to a coded format
is called encoding. An encoder has a number of input lines, only one of which input is activated at a given time
and produces an N-bit output code, depending on which input is activated.
For an 8-to-3 binary encoder with inputs 10-17 the logic expressions of the outputs YO0-Y2 are:

YO=I11+I13+I15+17

Y1=12+13+16 +17

Y2=14+15+16 +I7

S Block d | Truth Table:

10 — 10
—n _
11 5 — 12 ]-:8 : — 2 o
Data | —]I3 ZRCOCET —Y1 |Outputs
2 Inputs| __|I4
—l 15 — Yo
S 116
13 —_— Y1 — 17
R
I0| 11 (12| 13| 14| I5( 16| I7 | Y2 | Y1 | Yo
I3 — = i{0Jo0[0[0[0[O0[O0 |0 00
O 110 0[0]0) 0| O 0 0 1
i 0|0l 1]10[0]0)0| O 0 1 0
Qoo 1[0]0)0O| 0 0 1 1
o O|lojofO0] 1|00 D 1 0 0
010l Of(0]0O0] 1|0 D 1 0 1
Ojlojo|lO0f0O]0O) 1|0 1 1 0
O|lojo0]JO0fO0Of]0] 0] 1 1 1 1

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Veril rogram for 8x3 en r structural:

module encoder_8_to_3(input [7:0] I,output reg [2:0] Y );
or(Y[2],1[A].1[S].1[6].1[7]);
or(Y[1].1[2].1[3].1[6].1[7]);
or(Y[OLIALIBLSLI7D);

endmodule
Veril rogram for 8x3 en r behavioral:
module encoder_8_to_3(input [7:0] I,output reg [2:0] Y );
always@(*)
begin
case(l)
8'b00000001: Y<= 3'h000;
8'b00000010: Y <=3'h001;
8'b00000100: Y <=3'0010;
8'b00001000: Y <=3'b011;
8'b00010000: Y <= 3'b100;
8'b00100000: Y <=3'b101;
8'n01000000: Y <=3'b110;
8'h10000000: Y <=3'b111;
default: Y<= 3'bxxx;
endcase
end

endmodule
i benct f ler behavioral:
module encoder_8 to 3 tb;
reg [7:0] I;
wire [2:0] Y;

encoder_8 to_3encoder(.1(1),.Y(Y));
initial begin

I=8'b00000001; #10

1=8'h00000010;

#10 1=8'h00000100;

#10 1=8'h00001000;

#10 1=8'000010000;

#10 1=8'000100000;

#10 1=8'001000000;

#10 1=8'010000000;

#10$stop;

end
always @(Y)

$display("time =%0t \tINPUT VALUES: \t 1I=%b \t output value Y = %b ",$time,l, Y);

endmodule

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Expected Wave form:
=+ Jencoder 8 to 3 th/i |8510000000 | (8500000001 800010000 8b100000CH

=4 Jencoder_8_to_3_thjY
4.2
LA-. [1

L [l

Result:

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Experiment 5:
Aim :Design of 8-bit parity generator and checker

Apparatus required: - Electronics Design Automation Tools used: -
« Xilinx ISE Simulator tool
» Xilinx XST Synthesis tool
+ Xilinx Spartan FPGA Board
« JTAGcable

» Adaptor 5v/4A
Theory:

The function  odd-parity is  defined within  the  module  parity-check in  Figure  9.2.
It generates a parity bit. The parity bit is 1 if the number of one-bits in the byte is
odd. Otherwise it is zero. The module has an 8-bit wvector input and a flag input -
en. It has an output chk. Whenever the flag goes high, the function odd-parity is
called. It returns the parity bit wvalue and assigns it to chk in the module. parity-
check is an example with a single-bit output-type function in it.  The function has
no local variables in it.

Circuit Diagram

even_parity

D4 p——
D3 >
D2 p———
D1 » XOR
DO p——

odd_parity|

D7 >
BLE eSS
D5 B XOR

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Truth Table

D7 | D6 D5 D4 D3 D2 D1 DO Even Odd_parity
1 0 1 1 0 0 1 0 0 1
1 1 0 0 1 0 0 0 1 0
1 1 1 1 1 0 1 1 1 0
1 0 1 1 1 1 1 0 0 1
0 0 1 0 1 0 1 0 1 0
0 1 1 1 0 1 0 1 1 0
0 1 0 1 0 0 1 1 0 1

VHDL Code for parity generator

library ieee;
use ieee.std_logic_1164.all;
entity parity is
port( data:in bit_vector(7 downto 0);
even_p,odd_p: out bit);
end parity;
architecture parity_gen of parity is
signal temp : bit_vector(5 downto 0);
begin
temp(0)<=data(0) xor data(1);
temp(1)<=temp(0) xor data(2);
temp(2)<=temp(1) xor data(3);
temp(3)<=temp(2) xor data(4);
temp(4)<=temp(3) xor data(5);
temp(5)<=temp(4) xor data(6);
even_p <= temp(5) xor data(7);
odd_p <= not(temp(5) xor data(7));
end parity_gen;

VHDL Code for parity checker

library ieee;

use ieee.std_logic_1164.all;

entity parity_chk is

port( data:in bit_vector(7 downto 0);

p: in bit;
e: out bit);

end parity_chk;

architecture parity_arch of parity chk is

signal temp : bit_vector(6 downto 0);

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



begin

temp(0)<=data(0) xor data(1);
temp(1)<=temp(0) xor data(2);
temp(2)<=temp(1) xor data(3);
temp(3)<=temp(2) xor data(4);
temp(4)<=temp(3) xor data(5);
temp(5)<=temp(4) xor data(6);
temp(6) <=temp(5) xor data(7);
e <= p xor temp(6);

end parity_arch;

Waveform:

Parity Generator:

(] Float (P.58f) - [Defaultwcfg]

[ File Edit View Simulation Window Layout Help
OBE|Z $DEX® (0| ) BEOE|FRIALB LA e

18
@ even_p
&

@ odd_p

Parity checker:

] Float (P.58f) - [Default.wcfg]

[ File Edit View Simulation Window Layout Help
OFE| L&D 'X®"0—’100 Q BREI= AR ALB2AIRAliwa|d |0 b »E[rosz]6= I |[@Retounc]

Result:

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Experiment 6
Design of Latches and flip flops: D-latch SR, D,JK, T

Aim: Design of Latches and flip flops (D-latch SR, D,JK, T) using Verilog and simulates the design

Apparatus required: - Electronics Design Automation Tools used: -

. Xilinx ISE Simulator tool
. Xilinx XST Synthesis tool
. Xilinx Spartan FPGA Board
. JTAG cable
. Adaptor 5v/4A
Theory:

LATCH AND FLIP-FLOP
Latch and flip-flop are memory devices and implemented using bistable circuit - its output will remain in
either O or 1 state. The output state of a latch is controlled by its excitation input signals. A flip-flop (FF)
is predominately controlled by a clock and its output state is determinted by its excitation input signals.
Note that if the clock is replaced by a gated control signal, the flip-flop becomes a gated latch.

a. RS (reset-set) latch circuit
When S (set) is set to 1, the output Q will be set to 1. Likewise, when R (reset) is set to 1, the output Q
will be set to 0. It is invalid to set both S and R to 1.

R S|R[Q|DQ
Q 0 | 0 [ Unchanged
0|10 1
= 1101 O
S Q 11110 0 Invalidinput

NOR gate implementation

s R|1?2Q
— —] 0 0 [Invalid input
S Q 0 1|1 o

1 0|0 1
_ — 1 1 | Unchanged
R Q

NAND gate implementation

Note that the input is active high for NOR gate implementation, whereas the input is active low for NAND
gate implementation.

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



b. Clocked RS FF

The major problem of RS latch is its susceptibility to voltage noise which could change the output states
of the FF. With the clocked RS FF, the problem is remedied. With the clock held low, [S] & [R] held
low, the output remains unchanged. With the clock held high, the output follows R & S. Thus the output
will be latched its states when the clock goes low.

clk=1 clk =)0
R S R Qn+1 Qn+1
S 00 ar ar
Q 0 1 0 Qn
clk —s 1 0 1 Qn
6 1 1 Invalid i/p Qn
S |
[S]
. D-type FF

The D-type FF remedies the indeterminate state problem that exists when both inputs to a clocked RS FF
are high. The schematic is identical to a RS FF except that an inverter is used to produce a pair of
complementary input.

clk D Qn+1
4‘ S>0—— 0 X Qn
Q 1 0 0
clk —{ 1 1 1
D Q

. JKFF

The JK FF is a refinement of the RS FF in that the undetermined state of the RS type is defined in the JK
type. Inputs J and K behave like inputs S and R to set and reset (clear) the FF, respectively. The input
marked J is for set and the input marked K is reset.

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY

clk=0 clk=1
J K Qn+1 Qn+1
Lﬁ 0 0 Qn Qn
K 0| 1 Qn 0
— Q 1 0 Qn 1
clk o 1 1 Qn Qn
J D 0
’7




e.

T-type FF
The toggle (T) FF has a clock input which causes the output state changed for each clock pulse if T is in
its active state. It is useful in counter design.

[ clk T | Qm
T ) 0 X Qn
Ik —j — Q 1 0 Qn
CIK — . 1 1 Qn
— — Q
r_/
Logic smybols of various latch and level-triggered flip-flops
—S Qr —S Qt —D Q— —J Q —T Qf
clk — clk — clk — clk —
—-R Q- —R Q- Q- —K Q- Q-
RS latch RS flip-flop D flip-flop JK flip-flop T flip-flop

f.

Edge-triggered FF

Clocked FF is a level-triggered device, its output responses to the input during the clock active period and
this is referred to as the "0" and "1" catching problem. For sequential synchronous circuit, the data transfer
is required to be synchronized with the clock signal. Additional circuit is included in the FF to ensure that
it will only response to the input at the transition edge of the clock pulse. These type of devices are called

edge-triggered FFs.

Logic smybols of various edge-triggered flip-flops

—S Q- —D Q- —J Q- —T Q-
clk — clk — clk — clk —
R Q| o -k QF Qf-
RS flip-flop D flip-flop JK flip-flop T flip

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY




5 | |

C Y 4 ]
Q: !

e > >
enabled hold enabled hold
Q,
negative negative
edge- triggered edge- triggered

Timing diagram for a gated D latch and a negative edge-triggered D FF

g. Master-slave FF
A master-slave type FF consists of two FFs, a master stage and a slave stage. The output states responding
to the inputs are transmitted to slave output through the master stage in different time slots of the clock
pulse. Hence the output will not be affected by the undesirable changes at the input after the output of the
master FF has been latched to the slave FF.

master slave

Qu
D——D Q D Q-

C Q~ —~C QR

clk

Master-slave D flip-flop

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Enabled: M S M S M S M S M
C A A A A
D
——— —— —
Qum
\ 4 \ 4 \ 4
Q:Qs

Timing diagram

h. EF timing parameters
Propagation delay: propagation delay for a FF is the amount of time it takes for the output of the FF to
change its state from a clock trigger or asynchronous set or rest. It is defined from the 50% point of the
input pulse to the 50% point of the output pulse. Propagation delay is specified as tpHL - the propagation
time from a HIGH to a LOW, and as tp_H - the propagation time from a LOW to a HIGH.

Output transition time: the output transition time is defined as the rise time or fall time of the output. The
tron is the 10% to 90% time, or LOW to HIGH transition time. The trw is the 90% to 10% time, or the
HIGH to LOW transition time.

Setup time: the setup time is defined as the interval immediately preceding the active transition of the
clock pulse during which the control or data inputs must be stable (at a valid logic level). Its parameter
symbol is ts.

Hold time: the hold time is the amount of time that the control or data inputs must be stable after the clock
trigger occurs. The ty is the parameter symbol for hold time.

Minimum pulse width: the minimum pulse width is required to guarantee a correct state change for the
flip-flop. It is usually denoted by tuw.

[, ./
CLK —— : :

D —. :
= . "« tPHL
:ZIPLH_>/ \
Q : L1\
tTLH_ S =
— = — =ty

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Verilog program for D-latch
module dlatch_reset (data, en, reset, q);

input data, en, reset ;
output g;
reg q;
always @ ( en or reset or data)
if (reset) begin
q <=1'00;
end else if (en) begin
g <= data;
end
endmodule //End Of Module dlatch_reset

Veril nch program for D-latch
module dlatch_reset_tb;

reg data, en, reset ;

wire @;

dlatch_reset dlatch(data, en, reset, q);

initial

begin

en=0;

data=0;

#5 reset = 1,

#30 reset = 0;

$monitor($time, "\ten=%b\t ,reset=%b\t, data=%Db\t, g=%b",en,reset,data,q);

#160 $finish;

end

always #25 en = ~en;

always #40 data = ~data;
endmodule

4. [dlatch_reset_th/data

4 jdiatch_resst_tb/en

wé Jjdlatch_reset_th/q
I

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Verilog program for D-flip flop with sync reset
module dff_sync_reset (

data , // Data Input
clk , // Clock Input
reset , // Reset input q
/I Q output
);
input data, clk, reset ;
output q;
reg g,
always @ ( posedge clk)
if (reset) begin
q <= 1'b0;
end else begin
g <= data;
end
endmodule

Veril nch program for D-flip flop with sync
module dff_sync_reset_tb;
reg data, clk, reset ;
wire @;
dff_sync_reset dffr (.data(data), .clk(clk), .reset(reset) ,.q(q));
initial
begin
clk=0;
data=0;
reset =1,
#5 reset = 0;
#80 reset = 1;
$monitor($time, "\tclk=%b\t ,reset=%b\t, data=%Db\t, q=%b",clk,reset,data,q);#100
$finish;
end
always #5 clk = ~clk;
always #30 data = ~data;
endmodule

4 [dff_sync_reset_tb/data

4 [dff_sync_reset_thjck

4 [dff_sync_reset_tbjreset

@ [dff_sync_reset_tb/q

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Veril nch program for D-flip flop with async r
module dff_async_reset (

data, // Data Input

clk ,// Clock Input

reset , // Reset input

q /I Q output

);
input data, clk, reset ;
output q;
reg q;

always @ ( posedge clk or negedge reset)
if (~reset) begin

g <=1'b0;
end else begin
g <= data;
end
endmodule
Veril nch proaram for D-flip flop with ncr

module dff_async_reset_tb;
reg data, clk, reset ;
wire q;
dff_async_reset dffr (.data(data), .clk(clk), .reset(reset) ,.q(q));
initial
begin
clk=0;
data=0;
reset =1,
#5 reset = 0;
#30 reset = 1;
$monitor($time, "\tclk=%b\t ,reset=%b\t, data=%b\t, q=%b",clk,reset,data,q);
#100 $finish;
end
always #5 clk = ~clk;
always #30 data = ~data;
endmodule

Expected Waveform
4. [dff_async_reset_tb/data

4 [dff async_reset_tb/dk

4 [dff_async_reset_tbjreset

4. [dff_async_reset_tb/q

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Verilog program for T-flip flop with sync reset
module tff_sync_reset (

data , // Data Input
clk , // Clock Input
reset , // Reset input
q // Q output

);
input data, clk, reset ;
output q;
reg q;

always @ ( posedge clk)
if (~reset) begin

g <=1'b0;
end else if (data) begin
q<=lg;
end
endmodule
Veril nch proaram for T-flip flop with svnc r

module tff_sync_reset_tb;
reg data, clk, reset ;
wire q;
tff_sync_reset tffr (.data(data), .clk(clk), .reset(reset) ,.q(q));
initial
begin
clk=0;
data=0;
reset =1,
#5 reset = 0;
#30 reset = 1,
$monitor($time, "\tclk=%b\t ,reset=%b\t, data=%b\t, q=%b",clk,reset,data,q);
#100 $finish;
end
always #5 clk = ~clk;
always #30 data = ~data;
endmodule

4, A:ﬁ_sync_reset_tbldata 1h1

@ /tff_sync_reset_tb/q

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Veril rogram for SR-flip fl
module srff(s,r,clk,rst,q,gb);

input s,r,clk,rst;
output q,qb;
wire s,r,clk,rst,qb;
reg q;
always @ (posedge clk)
begin
if(rst)
g<=1'b0;
else if (s==1'b0 && r==1'b0) q<=q;
else if (s==1'b0&& r==1'b1) q<=1'b0;
else if (s==1'b1 && r==1'b0) q<=1'b1;
else if (s==1'b1 && r==1'b1) q<=1'bx;
end
assign qb=~q;
endmodule

Veril nch program for SR-flip fl
module srff_tb;
reg s,r,clk,rst;
wire g,qb;
srff srflipflop(.s(s),.r(r),.clk(clk),.rst(rst),.q(q),.qb(gb));
initial
begin
clk=0;
s=0;r=0;
#5rst =1, #30 rst = 0;
$monitor($time, "\tclk=%Db\t ,rst=%b\t, s=%Db\t,r=%b\t, q=%b\t, gb=%b",clk,rst,s,r,q,qb);
#100 $finish;
end
always #5 clk = ~clk;
always #30 s = ~s;
always #40 r = ~r;
endmodule

‘> farff_tbfrst | 1hi
4 ferff_thfg 1ho
4 [ferff_thfgb |1hi

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY




Verilog program for JK-flip flop
module JKFF ( input J,input K, input clk, input rst, output reg Q);
always @(posedge clk or posedge rst) //asynch reset

begin
if(rst == 1)
begin
Q<=0;
end
else begin
case({J, K})
2'b00: Q <= Q; //no change
2'b01: Q <= 1'b0; //Clear
2'010: Q <= 1'b1; //Set
2'b11: Q <= ~Q; //Complement
endcase
end
end
endmodule
Veril nch program for JK-flip flop with
module JKFF _tb;
reg J,K,clk,rst;
wire Q;
JKFF JKflipflop(.J(J),.K(K),.clk(clk),.rst(rst),.Q(Q));
initial
begin
clk=0; J=0; K=0;
#5rst =1,
#30 rst = 0;
$monitor($time, "\tclk=%Db\t ,rst=%b\t, J=%b\t, K=%b\t, Q=%b"clk,rst,J,K,Q);
#100 $finish;
end

always #5 clk = ~clk;

always #30 J = ~J;

always #40 K = ~K;
endmodule

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



EXPERIMENT 7: 8bit Up/Down Counter

Aim: To Design and implement an 8bit Up/Down Counter with enable input and synchronous clear
Apparatus required :- Electronics Design Automation Tools used:-

e Xilinx ISE Simulator tool
e Xilinx XST Synthesis tool

updcounter
N

a(3:0)

updcounter

Verilog code:

module updcounter(a,clk,N,u_d);

input clk,u_d,;

input[3:0]N;

output[3:0]a;

reg[3:0]a;

initial a =4'b0000;

always@(negedge clk)
a=(u_d)?((a==N)?4'b0000:a+1'b1):((a==4'00000)?N:a-
1'b1);

endmodule

Test bench

module tst_updcounter();//TEST_BENCH
reg clk,u_d;

reg[3:0]N;

wire[3:0]a;

updcounter c2(a,clk,N,u_d);
initial

begin

N =4'h0111;

u_d=1b0;

clk =0;

end

always #2 clk=~clk;

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



always #34u_d=~u_d;

initial $monitor
($time,"clk=%b,N=%b,u_d=%"h,a=%h",clk,N,u_d,a);
initial #64 $stop;

endmodule
Waveform
wdow Layout Help
dw o | M % NN = Mgy =)
Objects <08 X #
Simulation Objects for Always_7_1 2
HEERED) @ B
bject Name Value »~
1 P 5
] ; £ © PEED 010
1 o 1 > %
D‘:ﬂ NB:0] 1010 O M ;{ﬂaﬁ:u] 2
2 apo] 0010 1= %) 0
or & @
P 10
Um [
¥ 10
U 0]
i
i

X1: 762,688,850 ps

BEHAVIORAL MODELING —1

# Oclk=0,N=0111,u_d=0,a=0111

# 2clk=1,N=0111,u_d=0,a=0111

# 4clk=0,N=0111,u_d=0,a=0110

# 6¢lk=1,N=0111,u_d=0,a=0110

# 8clk=0,N=0111,u_d=0,a=0101

# 10clk=1,N=0111,u_d=0,a=0101
# 12clk=0,N=0111,u_d=0,a=0100
# 14clk=1,N=0111,u_d=0,a=0100
# 16clk=0,N=0111,u_d=0,a=0011
# 18clk=1,N=0111,u_d=0,a=0011
# 20clk=0,N=0111,u_d=0,a=0010
# 22clk=1,N=0111,u_d=0,a=0010
# 24clk=0,N=0111,u_d=0,a=0001
# 26¢clk=1,N=0111,u_d=0,a=0001
# 28clk=0,N=0111,u_d=0,a=0000
# 30clk=1,N=0111,u_d=0,a=0000
# 32clk=0,N=0111,u_d=0,a=0111
# 34clk=1,N=0111,u_d=1,a=0111
# 36¢lk=0,N=0111,u_d=1,a=0000

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



# 38clk=1,N=0111,u_d=1,a=0000
# 40clk=0,N=0111,u_d=1,a=0001
# 42clk=1,N=0111,u_d=1,a=0001
# 44clk=0,N=0111,u_d=1,a=0010
# 46clk=1,N=0111,u_d=1,a=0010
# 48clk=0,N=0111,u_d=1,a=0011
#50clk=1,N=0111,u_d=1,a=0011
# 52¢lk=0,N=0111,u_d=1,a=0100
# 54clk=1,N=0111,u_d=1,a=0100
# 56¢lk=0,N=0111,u_d=1,a=0101
# 58clk=1,N=0111,u_d=1,a=0101
# 60clk=0,N=0111,u_d=1,a=0110
#62clk=1,N=0111,u_d=1,a=0110

Result

WEST GODAVARIINSTITUTE OF SCIENCE & TECHNOLOGY



Experiment 8: Design and Implementation Universal Gates

Aim: To design and implementation of universal gates
Tools: Tanner/ Mentor Graphics-Pyxis, AMS, Calibre

(i). NAND Gate:
Circuit Diagram:

Voo Voo
“""& . _‘3 41 B I 2-input NOR id NOR
4~I j 0 0 1 lP‘fl,l'”P :lrlltlt)l tuzblc
Fa ﬁ! 0 l l b_q 4 = ]
att™ 1] 0o 1 . 001
1] 1 o i e R
Bt ‘
B Pull-down 1 0}0
¥ T tree
Gnd [ 110

Two input CVIOS MAND gate

PROCEDURE:
1. Connect the Circuit as shown in the circuit diagram using Pyxis Schematic tool
2. Enter into Simulation mode.
3. Setup the Analysis and library.
4. Setup the required analysis.
5. Probe the required Voltages
6. Run the simulation.

7. Observe the waveforms in EZ wave.

Prepared by D.Sridhar

57



Dept. of ECE VLSI Lab

Testbench:

M Appications  Places  System @ ) 12327 Q)

MGC File Edit Add Select Context Beport View Windows Setp fHelp Gen

B-cUne 2Ll A eggva
e BHIE
@ i © v -8 v o EOEREED

Session

X

Library

Simutation

Draw
Text
Check & Save

Select
By Property

o0

)

Unsalect All

UL LN

Edit Object.
Add

Instance

IS

v

Wire
BusBundie
Port »
Name
instance | »
Net
MisceRaneous
Connect

< {mgc_tree] [root@visi /mgc_tree] &2 Project Navigator - /mgc_tree/nag/and/nandd ... || £§ sheetl nandd - Pyxis Schematic > ]

M sopiicazons Haces Syster @

¥56 Zit Add Sclect Covmd Dooot Miw Wndowe Sewp Hop  Gonerio 3TOE ol 28
oy ey (e %
B-SRBRG|

(770617,

| : = .
1 sheell lest 2 B e « v 2 EIOER
Sy
Samuiianan
Duw
ok Save
Select
by trmpy
U et £)

ZAAYENLNB|QO]|

v

(@ trorre: “rot@viamgr_tree] | B2 Frojoct Nav gat-_mmge_tmamagmanant = || 3 shestl test - 1yas Schemate = ®

WEST GODAVARI INSTITUTE OF SCIENCE & ENGINEERING 58



Dept. of ECE VLSI Lab

Waveforms

M) Applicslivns Paces Syslern %

Ile Cdit vew f=rmst Teols Curcor Schematic  Wirdow
BEM &g LB BER Ak @A XRR S

Wavefarm List

Currely Op2n Jatas:
B CY tesintestt € mein

T ZLIHAN
“ Y, L}
av
8 -

antains| 2

ks Na~e

VOUTT;

v

40.0N G0.0 00,00 92N 10 0K

| Warkspare1 |
(_10R2n ne dazabzs2 fran ‘dmac_rae/nagfasnzh-auseLsAcs imfestt/test_nt2siavdb’ ... Done [Laaem
[@ | £ mye vew | @ poot@vsi ige wee] [ 5B Project Navigator - /.|| £ [ 22 crisnual [ £ sublractor J[ES /test - Pyxis Scive... || @ Ezwave 13.23 Proo., "]

WEST GODAVARI INSTITUTE OF SCIENCE & ENGINEERING



Dept. of ECE

NOR Gate:

@ Applications  Places System @

VLSI Lab

1) a51eM Q)

>

MGC File Edit Add Select Context Report View Windows Setup Help Generic13 TDK

R-CcUBe LidB EH BFve

Se: 0 (W|dae) (nor_or | schematic | sheet! )
@

(2] sheetl nor_or 13

9
¢
@
=
4
r-J

S

s

g *

&

v

* Testhench:

(0.821, 0.488)

e« + B v 2 [ENEEI

Session
Library
Simulation
Draw

Text

Check & Save
Select
By Property
Unselect All
Edit
Move
Copy
Delete
Undo
Flip »
Rotate 3
Edit Object...
Add
Instance
Wire
Bus/Bundle
Port >
Name
Instance | »
Net
" Miscellaneous |

Connect

At b bonnd || R Denin b Rlaviimnban i [ P Y i

| S ReR
L [mgc tr @ Applications Places System @

e ZEE T A
1) asapm Q)

(>

e

MGC Fle Edit Add Select Context Report View Windows Setup Help Generic13 TDK

B-cuBné L a8 azve

Set 0  (W|dao) (test]schomatic | sheott)

aH» i

(2) sheetl test &3

LB Q0

01

s

GNRR

(1.169, 1.143)

® « + B v s EEREED

Session
Library
Simulation
Draw
Text
Check & Save
Select
By Property
Unselect Al

Delete
Undo
Fip | »
Rotate | »
Edit Object.
Add
Instance
Wire

Bus/Bundle

<
@ [mgc_tree] || & [root@visi:/mgc_tree] || £ Project Navigator - /... [sheetl fsubtractor ... | £3 / || & computer || £ manual

[ 3 sheeta test - Pyxis ... | 5 @

WEST GODAVARI INSTITUTE OF SCIENCE & ENGINEERING

60



Dept. of ECE VLSI Lab

WAVEFORMS:

.Appllcatlons Places System @& i) asapm Q)
Flle Edit View Format Tools Cursor Schematic Window Help
BEEE BX 0o BEFEIH dEMAQRQALAS BEL dH2B08

Waveform List

@ x B

o

[Currently Open Databases |

= ‘3 test_boljk  C /mgc_tre
# (1 TRAN

W \‘ |
UL
BN EEREEEE.

(Contains | |2 & L
vl Name
TRAN
v
e
L voUT)
L V(vDD)

400.0N

[z [
[&] Tree I [a53Pm

é [mgc_tree] || & troot@uvisi:imgc... || £8 Project Navigato... || 4 (sheeta fsubtrac... || £ / | 8 Computer [ £ manuat J[ES /test -Pyxis sc... || @ Ezwave 13.2aP... - B ®

RESULT:

WEST GODAVARI INSTITUTE OF SCIENCE & ENGINEERING



WEST CODAVART INSTITTITE OF SCTENCE & ENGINEERING



Experiment 9: Design and Implementation of an Inverter

AIM: To design and Implementation of an Inverter
TOOLS: Tanner/ Mentor Graphics-Pyxis, AMS,
Calibre. CIRCUIT

DIAGRAM:
INVERTER Vdd

Input D) Qutput i
Input | Output A N
| 0 -
L Vss

WEST CODAVART INSTITTITE OF SCTENCE & ENGINEERING



PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis Schematic tool

2. Enter into Simulation mode.

3. Setup the Analysis and library.

4. Setup the required analysis.

5. Probe the required Voltages

6. Run the simulation.

7. Observe the waveforms in EZ wave.
8. Draw the layout using Pysis Layout.
9. Perform Routing using IRoute

10. Perform DRC, LVS, PEX.

e
File Add Edit Select View Tools Beport Window Setup Help Generic Kit TDK ISR
=1 og i : -
1] .4 MIER6E B -
| 2 t:| [I][ so 0+ (widam) (cmasioveni21186, 1.0200) Hotkays: On
] T 7R r | - -
— Obje:tEdor ViR X (2] Schematic#1 mylib/c... &3 | |2« =BBv @ m
X Qeu@ X . I - Session
L3 ‘ - ;
{:% | Property ‘ Value 4 Library |
o5 I Simulation |
Ll 2 J
........ Edit
0 Draw
o Text i
Check & Save |
@ Select
[;I' By Property |
) Unselect All |
(=4 I Edit
4+ v
L2 g =T Move
o [« » -
% i Copy
w* ~| Attribute
A . [« & w5 =2 9| 2 ¢/|] 23 2 28 & | & & 2o & = Delete
'I: Undo
‘ Flip > |
f |
Rotate  » |
e = Properties |
Add
Instance
Wire
........... ==
o | ¢ Property
El i L Name
........... @
P B » Instance  » |
(¢ | @ [root@hari:~] || ¥ ICstudio - Project Formanual | E3 schematic#1 mylib / cmosinverter ... | [E3 ]

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING




Layout

& Appiicstions Paces Systern €3 ) 12:21Pm Q)

MGG Fic Ear Add  Solcer  Uoniest Uonrcctvify  licport View 1003 Windowa Sctp Hop Genete D4 m
g AR TR s LY E)

e B |

BEeE e w2 LER E {681 & v | L -]

| cortae oexiAGF @) mress: e 3 ¥R Ousa 979 7.3 Laywr. DN s 0

@ 1€ 0: Ine> Incv () 54 = v o ERTONRAE
Voo S | &% |
et

—eE oo

Layer vrav|s v |k il

o
Py
N
RW

| P r-F

e =1

Exoer Edit
CBC Edil
DLA _ayout
DLA Device
CCO

CSesson

ISrulcs
lhaantINC
Ehcrt Choeie”

T, Fuik o boabal
| ) moe: statrg ratoxttho e
T, i istrnd baabon U1 s il v

c
(<)

[@ -| [0 fmye vee] [ povi@visivimge Lee; || 5B Project Naviga.ur - smge tegnagfinverteriney... || B3 1€ 0: Incy > Inev () =yxs Layaut

Result Verification Environment:

W Appucavons races System w9 11:39 AM @Y

] == Calibre Interactive - PEX v2012.4_25.21 : layout.pex.runset /(D] PEX Netlist Flle - layout.pex.netlist -
Eile Transcript Setup Help Elle Edit Options Windows
7 T T RS e == T + File: layout.pex. netlist
7 OR ITS LICENSORS AND IS SUBJECT TO LICENSE TERMS | R R PRI Py
/7 Mentor Graphics software executing under i il
7 =
Set bt pex"
fu| Eile Miew Highlight Tools Window Setup Help [BEPex] or
| ¥ K7 | & L Yo M N a 3
- Navigator | @ % || % Extraction Results 35 layout x}
'S R - - I_g N_GROUND_M1_s N_GROUND M1 _b NMOS 3e-07 w.
3 P No. | Layout Net Source Net R Count | C Total (F) | C+CC Total (F) | |2-3 N_vD_M2-s N VDB M2 b BMOS L=1.3e-07 3 6
54 ground |GROUND |15 | 1S0784E-12 ot "
H = Exfraction Huyols 2 | vOD VDD 15 144360E-12 | 144360E-12 | |Pt LAYOUT. pxi
& Comparison Results 3 | output OUTPUT 15 1.890S7E-12 | 1.89057E-12
o 25 Parasitics 4 | input INPUT 13 2.53545E-12 | 2.53545E-12
ERC
b} ~ ERC Pathchk Polygons
u i | ERC Patnchk Nets Rep
| Reports
Extraction Report
a LVS Report
Rules
b
- « Rules File
a2 View CBC Edit
[ O no DLA Layout
]‘ &4 Finder DLA Device X
.$ - Schematics Eco |
B Sewp iC Session
4 Optians =
(%) Find Nets %% || Coupling to: &

ﬁ Note: Popping aiready existing view % : shest1”. Use -new 1o create new shest.

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING



Experiment Practice & Viva Answers

WEST GODAVART INSTITTITE OF SCTENCFE & ENGINEERING



Experiment 10: Design and Implementation of Full Adder

AIM: To design and Implementation of an Fulladder
TOOLS: Tanner/ Mentor Graphics-Pyxis, AMS, Calibre
CIRCUIT DIAGRAM:

QApp!ications Places System % '9 4:48 PM Q))

MGC File Edit Add Select Context Report View Windows Selup Help Generici3TOK. o

B TR T TE

[[/set 0 (W] com) (k| schamatic | st ) (18.208, £.054)

RELIOEY |
X ‘jr@sheelladdeuast 10 | (2) sheetl adder 9 | BesBva

A Session

Library
Simulation
Draw

Text

Check & Save
e
By Property
Unselect All
Edit

Move

LB | @Ok

- Lo

=22

Copy

Delete

Undo
Flip | »
Rofate | »

3 =80

Edit Object..

Add
Instance

‘.‘L‘&

Wire
Bus/Bundle
Port »

Name
Instance | »

=
hd

‘é (B mgc_tree \ [root@visi:/mgc_tree] \ -2 Project Navigator - /mgc_tre... \ [sheetl fsubtractor - Pyxis ... H B/ H £ sheetl adder - Pyxis Schem...\ ®
Full Adder Truth table

INPUTS OUTPUTS
\
XOR SUM CARRY
B ) SUM L
Y/ 0 0 0 0

1 0

1 o] 1 0

AND

O
E]
o o o oy
o
-

1 1 0 1

Carry 1 0 0
our 1 (o] 1 1

-
o

o o

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING



Testbench:

@ Applications Places System @) ) aa7em Q)

MGC File Edit Add Select Context Report View Windows Setup Help Genericl3 TDK e 8
55288 ¢
Set 0 (W|dao) (adkdor test | schematic | shoet1 )

(2) sheetl adder_test &3 © ewBva

Session

(7.779, 0.782)

Library
Simulation
Draw
Text
Check & Save |
Select
By Property
Unselect All

Delete |
Undo
Fip | »
Rotate | »
Edit Object,
Add
instance |
Wwire
Bus/Bundle
Pot | »
Name
Instance | »

<4
éi | £ mgc_tree | [root@vlsi:/mgc_tree] || &2 Project Navigator - /mgc_tr ®

[sheetl fsubtractor - Pyxis ... || B/ [ 3 sheet1 adder test - Pyxis sc...|

Waveforms:

@ Applications Places System @&

() a:a7pm Q)

Tools Cursor Schematic Window
oo B ol EMAR]YA L BEL A QM BEDE

Wave:l

[

Canmn;[ @

Currently Open Databases

= 3 adder_test.adna ¢ /{
® (1 TRAN

1

S :i

(Contains ‘ @

|

W(CARRY)

100.00 150.00 20000 N 30000 400.0N 450.0N

J

@] | © mgc_tree | & [root@visi:/imgc_tree] || &8 Project Navigator - /mg... || 3 [sheeta fsubtractor - P... || £/ |[E3 /adder test - Pyxis sc... || @ Ezwave 13 .2a Production |

[4:45 FM

@

Result;

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING



WEST CODAVART INSTITTITE OF SCTENCE & ENGINEERING



Experiment 11: Design and Implementation of Full Subtractor
AIM: To design and Implementation of an Full-subtractor
TOOLS: Tanner/ Mentor Graphics-Pyxis, AMS, Calibre
CIRCUIT DIAGRAM:

M Applications Places System % 4) 4:43PM Q))
MGC File Edit Add Select Context Report View Windows Setup Help Generic13 TDK Gw
W O | 4) =) 4 | | =

R-cUB8 1148 EH E8Fve

Se: 0 (W |dae) (fsubtractor | schematic | sheetl ) (-2.765, 4.069)

«HD || y |

() sheetl testt (2] sheetl fsubtractor 3 | B esfBva | sch.. v+ x|
B E E EIT GG - N Session
Library
Simulation
Lk ™
Draw
o Text
0 Check & Save
m Select
By Property
| |
L Unselect All
Js Edit
Move
dw
2 Copy
=% Delete
-

+ Undo
'1: Flip »
y=§ Rotate | »
4 Edit Object...
Ha Add
5 Instance
»

S 101 Wire
BouT Bus/Bundle
Port »
Name
Instance | »
Net
Miscellaneous
Connect
< i "
Message Area viEX
[@]-[ ® mgc_tree || troot@visiimgc_tree] || #A Project Navigator - /mg... || 3/ | £ manual || £ subtractor Ha sheetl fsubtractor - Py... [ ®
INPUT ouTPUY
A B Bin D Bout
Mrwend (A M () ) ) i
) y " 1 1 i
Schtravind (F _ l
) |
l 1 1
I ) | 0
] ) 0N
W S ernity ~
| ) ) 0
Eorron Rz !
1ot Sebescscr o - 1 | 1 "

Full Sudtractor

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING



Testbench:

) a:a0em Q)

@ Applications Places System @)

MGC File Edit Add Select Context Beport View Windows Setup Help Genericl3 TDK s
BR-cune LidR EH BHvE

Sek 0+ (Wdam) (festt| schemati | sheetl)

«8e L ]

(2 sheetl testt g3 | () sheetl fsubtractor

(4.0%0, 0.257)

® v+ @ v o[ EEEREE]
X B

Session

FSUBT
Library
Draw

Text

>BOUT

J
|
Simulation |
J
J
|

Check & Save
Select

By Property |

 UnselectAll |
Edit

Move |

>D0UT

LyP| Q0

.
7

copy |
o |
Undo |

I Flip > |
b  rote | » |
J

9550

Add
instance |

Wire |

Bus/Bundle

|l

< 0 Bl
Message Area v X x|
@] | D mgc_tree | & [root@visi:/imgc_tree] || &8 Project Navigator - /mg... | £/ [ £ manuat || £ subtractor | E3 sheet1 testt - Pyxis Sc... ®

OUTPUT WAVEFORMS:

@ Applications  Places System € ) aazem Q)

g %
(Contains @
Currently Open Databases |
= 3 test FF C /ngc_tree/|
@ () TRAN
< >l
[
(Contains 17
| Name
TRAN
v
o vE)
“\/v(eouT)
V)
L v(pouT)
L, V(VDD)
Kz — | R T
| Elree WEMBE] [ 0rag vericallyto change the height of the above row T [@a2Fm
@| | D mgc_tree | & [root@visi:/mgc_tree] || £ Project Navigator - /... || £3 / || £ manual [ © subtractor J /testt - Pyxis Sche... | [ Ezwave 13.2a Prod... | [ ®

RESULT:

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING



WEST CODAVART INSTITTITE OF SCTENCE & ENGINEERING



Experiment 12: Design and Implementation of Decoder

AIM: To design and Implementation of Decoder
TOOLS: Tanner/ Mentor Graphics-Pyxis, AMS,
Calibre

CIRCUIT DIAGRAM:

Input Output
— A| B | C N[N/ |/V3|/N4|/¥5] /6| /Y7
s = LiL|L|L|H|H|H|H|H|H]|H
— e mb—1|H| L] L|H]|L|H|H|H|H|H|H
b—— | L|H|L|H|H|L|H|H|H|HI|H
M| H|H|L|H|H|H|L|H|H|HI|H
:: L/ L|H|H|H|H|H|L|[H|HI|H
i H|{L|H|H|H|H|H|H|L|H|H
L|H|H|H|H|H|H|H|[H]|L]|H
H|H|H|H| H|H|H|H|H|H]|L

18 - }— 21
G o e e e .
T = FE b

-

JOU0

WEST GODAVART INSTITTITE OF SCTENCE & ENGINEERING




Circuit diagram:

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING



WAVEFORMS:

@ Applications Places System @

Thu Oct 25, 11:08 AM  root

EZwave 16.4 -l ]
File Edit View Format Tools Cursor Schematic Window Help.
=1 5 R e paEMQ®Q 8 s BEAER AN BEO8
Waveform List I

e

(Contains | | @

Currently Open Databases
= {3 decodercell_default_1

1 TRAN

(Contains | |2
[Cv [ [ an

v | Name

" V(DO)

" V1)

U V(D2)
[ASRIGEN

U VAINPUTIO)
U VAINPUTIL)
U VNS 73)
DU VNS 74
U V(NS BS)
U V(NS B9)

U V(NEOS)
[E]wree [N[EJiEE | [11:07 AM
[root@system2: ~/Des... [Project Navigator - /s... || (3 / decodercell - Sim M... i @

EZwave 16.4

RESULT:

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING



Experiment Practice & Viva Answers

WEST CODAVART INSTITTITE OF SCTENCE & ENGINEERING



Experiment 12 Design and Implementation of an D-Latch

AIM: To design and Implementation of an D-Latch
TOOLS: Tanner/ Mentor Graphics-Pyxis, AMS.
CIRCUIT DIAGRAM:

D S Q+ Q+
SR
latch
R Q+ D—— Q+
S —
Q E[p] a Q
0]0 latch latch
01 latch latch
B 1lof o 1
Q 111 1 0

WEST CODAVART INSTITTITE OF SCTENCE & ENGINEERING



CIRCUIT DIAGRAM:

wot] erEe - Pysle Semamatic TN
MOC Dk R4 484 Tdexi Coved Desat Vew Wedowr Zelp Bk Denoc)l TR oo
B-24U8e v 4B 4 agve
= 0. A | (ot | swraie [ v | Lmem

eds BHE

G sl g

X,

Dok s Zare

Semet
By Propary

Unseci N

'[‘/.’.
L
0
e
7]
7

e
Vo

y L
| 35

A By

L L
P2108ect
— =
e
=

Bavtuade

Cormect

L [myc_tree] [roa¥@As my:_tree f_-! Frogect Kawigator - dmoc_tweingg - Pyais Prope G Stestl e - Pyoks Schomand >

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING




Testbench:

@ Applications Places System @& (i) 12:18pM Q)
MGC File Edit Add Select Context Report View Windows Setup Help Generici3 TOK et
B-cune 1148 E BFvE
Se 0 (W) (ci test | schamatic | shoat1 ) (3626, 2250)
(2) sheetl dff_test &3 ®«wBva
a Session |
Library
Simulation
*
] Draw
L] } Text
(¢ } Check & Save |
@ Select
By Property
.
” Unselect All
s Edit
4 Move
S |
| Copy
-5
Delete
- -
Undo
T e |
v Roate | »
| Edit Object...
¢
| Add
instance |
»
Wire
Bus/Bundle
Port >
Name
instance | » |
wER 2383m |
« | »
@] [ [mgc_tree] | & [root@visi:/mgc_tree] | 8 Project Navigator - /mgc_tree/nag/dff/dff_test -... || £5 sheetl dff test - Pyxis Schematic ®
@ Applications  Places System @ 1) 12.18PM Q)
File Edit View Format Tools Cursor Schematic Window Help
BEE & w oo | B F cof dmEM Q& QS BE4g O 0 HB2EO0BE
Waveform List
g B
(Contains | @
Currently Open Databases
=Y dff_testdffff  ( /mgc) 1 [
@ 1 TRAN ‘ ‘ ‘
< D]
)
(Contains [ |2
Zh Narme
TRAN
A\ v(eLKy
VD)
v
\[V(QBAR)
 V(vDD)
) ) ) ) 200.0N
]
Data: X = 119.65812N, Y1 = 1.02051, deftaX = 0.00000
K1l I ] 1§ [
| [] Tree [7[E]tise | |12:17 PM
@/ [mgc_tree] | & [root@visi:/mgc_tree] | &2 Project Navigator - /mgc_tree/nag/d / dff_test - Pyxis Schematic EZwave 13.2a Production ®

Result:

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING



WEST CODAVART INSTITTITE OF SCTENCE & ENGINEERING



Additional Experiment

Experiment 14: Design and Implementation of RS-L atch

AIM: To design and Implementation of RS Latch

TOOLS: Tanner/Mentor Graphics - Pyxis, AMS,
Calibre.CIRCUIT DIAGRAM:

SR Latch based on NOR Gate

R
Q
Q
S
S R Q Operation
Q
0 0 Q s Hold
Q
1 0 1 0 Set
0 1 0 1 Reset
1 1 0 0 Not allowed

WEST CODAVART INSTITTITE OF SCTENCE & ENGINEERING



.Apphcations Places System %

1) 12:08 M Q)

MGC File Edit Add Select Context Report View Windows Setup Help Generic13 TDK

R-cuBe «108 B agve

Sel: 0+ (W|dae) (sitc | schematic | sheetl )

(2] sheetl sritc 13

<

PN N B

<

v

MR

(657, 2038)

Eudﬂv!

Session
Library
Simulation
Draw

Text

Check & Save |
Select
By Property
Unselect All
Edit
Move
Copy
Delete
Undo
Flip 3 ‘
Rotate 3 ‘
Edit Object... ‘
Add
Instance
Wire
Bus/Bundle

Port > ‘
Name
Instance | »
Net ‘
“Miscellaneous |
Connect

[root@vlsi:/mgc_tree] ‘ ?_é Project Navigator - /mgc_tree/nag - Pyxis Proje... \ a sheetl sritc - Pyxis Schematic

é \ [mgc_tree]

WEST CONDAVART INSTITTITE OF SCTENCE & ENGINFEERTING



Testbench:

@ Applications Places System @ @) 1215M Q)
MGC File Edit Add Select Context Beport View Windows Setup Help Generic13 TDK s
2 W) (i CRC O R =
B-cuBé L dB E BAvE
Seb 0 (W|dao) (tost | schemato | shoot1 ) (1131, -1.861)
(2) sheetl test & ® « « 8B v 2 EEREES
Session
Library
E Simulation
)
| Draw
0 ‘ Text
(¢ Check & Save |
@ Select
By Property
e |
7 Unselect All
Us Edit
£l Move
i Mo )
| Copy.
- -
Delete |
b -
Y Undo
T e |
¥ | Rotate | »
| Edit Object.
121
“ Add
> ACCphase): AC instance |
wie |

Bus/Bundle

« »
@] | [mgc_tree] | 3 [root@visi-/mgc_tree] | B2 Project Navigator - /mgc_tree/nag/sriatch/sritc ... || E5 sheetl test - Pyxis Schematic ®
@ Applications Places System @& (1) 12:1apm Q)

File Edit View Format Tools Cursor Schematic Window
BEHE & %

Waveform List

wHMQRAQAA L BEL A HMBEOR

ly Open Database:

| | | |
| b |

150.0M |

100.0M
50.0M
0.0M

TRAN
(A7) -50.0M

S0 15000 0 30000 s0.0n 40000 ssn

| [12:14 P00
®

/test - Pyxis Schematic |

J [root@vlsi:/mgc_tree] || B2 Project Navigator - /mgc_tree/nag/sr..

EZwave 13.2a Production

Result:



Experiment Practice & Viva Answers



	(R20) III – B. Tech., II-Semester
	INSTRUCTIONS TO THE STUDENTS
	Electronics & Communication Engineering
	Objectives:
	Course Outcomes:

	Very Large Scale Integration (VLSI)
	VLSI Design flow
	DESIGN STYLES
	Introduction to HDL

	Xilinx Manual:
	EXPERIMENT- 1

	Test Bench:
	Experiment 5:
	Experiment 6
	S Q
	S Q
	R
	Q Q
	Q
	D Q

	J Q

	T Q
	Q
	Verilog code:

	Experiment 8: Design and Implementation Universal Gates
	Experiment 9: Design and Implementation of an Inverter
	Result Verification Environment:

	Experiment 10: Design and Implementation of Full Adder
	Experiment 11: Design and Implementation of Full Subtractor
	Experiment 12: Design and Implementation of Decoder
	Experiment 14: Design and Implementation of RS-Latch


