
DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

WEST GODAVARI INSTITUTE OF SCIENCE &

ENGINEERING

PRAKASARAOPALEM, TADEPALLIGUDEM-534112

Department Of
ELECTRONICS & COMMUNICATION ENGINEERING

LABORATORY MANUAL
For

DIGITAL IC APPLICATIONS LAB

 Prepared by

K.Lalitha

for

II-B.Tech: II-Sem

NAME

BRANCH ELECTRONICS & COMMUNICATION

ENGINEERING

REGULATION R 20

YEAR & SEM II YEAR – IInd SEM

ACADEMIC

YEAR

2022-2023

ROLL

NUMBER

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

R-20 Syllabus for ECE - JNTUK w. e. f. 2020 – 21

 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

II Year – II Semester
 L T P C

0 0 3 1.5

DIGITAL IC DESIGN LAB

Note: The students are required to design and draw the internal logical structure of the
following Digital Integrated Circuits and to develop VHDL/Verilog HDL Source code, perform

simulation using relevant simulator and analyze the obtained simulation results using necessary

synthesizer. All the experiments are required to verify and implement the logical operations on
the latest FPGA Hardware in the Laboratory.

List of Experiments: (Minimum of Ten Experiments has to be performed)

1. Realization of Logic Gates

2. Design of Full Adderusing 3 modeling systems

3. 3 to 8 Decoder-74138

4. 8 to 3 Encoder (with and without parity)

5. 8x1Multiplexer-74151 and 2x4De-multiplexer-74155

6. 4-Bit comparator-7485

7. D Flip-Flop-7474

8. Decade counter -7490

9. Shift registers-7495

10. 8-bit serialin-parallel out and parallel in-serial out

11. Fast In & Fast Out (FIFO)

12. MAC (Multiplier &Accumulator)

13. ALU Design.

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

Department Of ELECTRONICS & COMMUNICATION ENGINEERING

DIGITAL IC APPLICATIONS

LABORATORY

List of Experiments

1. Realization of Logic Gates
2. Design of Full Adder using 3 modeling systems
3. 3 to 8 Decoder -74138
4. 8 to 3 Encoder (with and without parity)
5. 8 x 1 Multiplexer-74151 and 2x 4 De-multiplexer-74155
6. 4- Bit comparator-7485
7. D Flip-Flop-7474
8. Decade counter -7490

9. Shift registers-7495
10. 8-bit serial in-parallel out and parallel in-serial out
11. Fast In & Fast Out (FIFO)
12. MAC (Multiplier & Accumulator)
13. ALU Design.

ADDITIONAL EXPERIMENTS

1. UNIVERSAL SHIFT REGISTERS

2. 4-bit counter

Lab Internal-

1

Present Absent Lab Internal-

2

Present Absent

Date 2023 Date 2023

Signature of

Examiner

 Signature of

Examiner

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

INTRODUCTION TO XILINX

Starting the ISE Software:

 To start ISE, double-click the desktop icon,or start ISE from the Start menu by

selecting:

 Start → All Programs → Xilinx ISE 8.2i → Project Navigator

 Note: Your start-up path is set during the installation process and may differ from the

one above.

Accessing Help

 At any time during the tutorial, you can access online help for additional information

 about the ISE software and related tools.

 To open Help, do either of the following:

 Press F1 to view Help for the specific tool or function that you have selected or

highlighted. Launch the ISE Help Contents from the Help menu. It contains

information about creating and maintaining your complete design flow in ISE.

Create a New Project:

Create a new ISE project which will target the FPGA device on the Spartan-3 Startup Kit

demo board.

To create a new project:

1. Select File > New Project... The New Project Wizard appears.

2. Type tutorial in the Project Name field.

3. Enter or browse to a location (directory path) for the new project. A tutorial subdirectory is

created automatically.

4. Verify that HDL is selected from the Top-Level Source Type list.

5. Click Next to move to the device properties page.

6. Fill in the properties in the table as shown below:

♦ Product Category: All

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

♦ Family: Spartan3

♦ Device: XC3S200

♦ Package: FT256

♦ Speed Grade: -4

♦ Top-Level Module Type: HDL

♦ Synthesis Tool: XST (VHDL/Verilog)

♦ Simulator: ISE Simulator (VHDL/Verilog)

♦ Verify that Enable Enhanced Design Summary is selected.

7.Leave the default values in the remaining fields.

8. Click Next to proceed to the Create New Source window in the New Project Wizard. At

the end of the next section, your new project will be complete.

9. When the table is complete, your project properties will look like the following:

Create an HDL Source:

In this section, you will create the top-level HDL file for your design. Determine the

language that you wish to use for the tutorial. Then, continue either to the “Creating a VHDL

Source” section below, or skip to the “Creating a Verilog Source” section.

Create a VHDL source file for the project as follows:

1. Click the New Source button in the New Project Wizard.

2. Select VHDL Module as the source type.

3. Type in the file name counter.

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

4. Verify that the Add to project checkbox is selecte

5. Click Next.

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

6. Declare the ports for the counter design by filling in the port information as shown below:

7. Click Next, then Finish in the New Source Information dialog box to complete the new

source file template.

8. Click Next, then Next, then Finish.

The source file containing the entity/architecture pair displays in the Workspace, and the

counter displays in the Source tab, as shown below:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

Using Language Templates (VHDL):

The next step in creating the new source is to add the behavioral description for the counter.

To do this you will use a simple counter code example from the ISE Language

Templates and customize it for the program design.

1. Place the cursor just below the begin statement within the counter architecture.

2. Open the Language Templates by selecting Edit → Language Templates…

Note: You can tile the Language Templates and the counter file by selecting Window →

Tile

Vertically to make them both visible.

3. Using the “+” symbol, browse to the following code example:

VHDL → Synthesis Constructs → Coding Examples → Counters → Binary →

Up/Down Counters → Simple Counter

4. With Simple Counter selected, select Edit → Use in File, or select the Use Template in

File toolbar button. This step copies the template into the counter source file.

5. Close the Language Templates.

Final Editing of the VHDL Source:

1. Add the following signal declaration to handle the feedback of the counter output below

the architecture declaration and above the first begin statement:

signal count_int : std_logic_vector(3 downto 0) := "0000";

2. Customize the source file for the counter design by replacing the port and signal name

placeholders with the actual ones as follows:

♦ replace all occurrences of <clock> with CLOCK

♦ replace all occurrences of <count_direction> with DIRECTION

♦ replace all occurrences of <count> with count_int

3. Add the following line below the end process; statement:

COUNT_OUT <= count_int;

4. Save the file by selecting File → Save.

When you are finished, the counter source file will look like the following:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitive in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity counter is

Port (CLOCK : in STD_LOGIC;

DIRECTION : in STD_LOGIC;

COUNT_OUT : out STD_LOGIC_VECTOR (3 downto 0));

end counter;

architecture Behavioral of counter is

signal count_int : std_logic_vector(3 downto 0) := "0000";

begin

process (CLOCK)

begin

if CLOCK='1' and CLOCK'event then

if DIRECTION='1' then

if count_int < ”1111” then

count_int <= count_int + 1;

else

count_int<=”0000”;

end if;

else

count_int <= count_int - 1;

end if;

end if;

end process;

COUNT_OUT <= count_int;

end Behavioral;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

Checking the Syntax of the New Counter Module:

When the source files are complete, check the syntax of the design to find errors and typos.

1. Verify that Synthesis/Implementation is selected from the drop-down list in the

Sources window.

2. Select the counter design source in the Sources window to display the related

processes in the Processes window.

3. Click the “+” next to the Synthesize-XST process to expand the process group.

Double-click the Check Syntax process.

4. Note: You must correct any errors found in your source files. You can check for

errors in the Console tab of the Transcript window. If you continue without valid

syntax, you will not be able to simulate or synthesize your design.

5. Close the HDL file.

Design Simulation:

Verifying Functionality using Behavioral Simulation

Create a test bench waveform containing input stimulus you can use to verify the

functionality of the counter module. The test bench waveform is a graphical view of a test

bench.

Create the test bench waveform as follows:

1. Select the counter HDL file in the Sources window.

2. Create a new test bench source by selecting Project → New Source.

3. In the New Source Wizard, select Test Bench WaveForm as the source type, and

type

counter_tbw in the File Name field.

4. Click Next.

5. The Associated Source page shows that you are associating the test bench

waveform

with the source file counter. Click Next.

6. The Summary page shows that the source will be added to the project, and it

displays

the source directory, type and name. Click Finish.

7. You need to set the clock frequency, setup time and output delay times in the

Initialize

Timing dialog box before the test bench waveform editing window opens.

The requirements for this design are the following:

♦ The counter must operate correctly with an input clock frequency = 25 MHz.

♦ The DIRECTION input will be valid 10 ns before the rising edge of CLOCK.

♦ The output (COUNT_OUT) must be valid 10 ns after the rising edge of CLOCK.

The design requirements correspond with the values below.

Fill in the fields in the Initialize Timing dialog box with the following information:

♦ Clock Time High: 20 ns.

♦ Clock Time Low: 20 ns.

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

♦ Input Setup Time: 10 ns.

♦ Output Valid Delay: 10 ns.

♦ Offset: 0 ns.

♦ Global Signals: GSR (FPGA)

Note: When GSR(FPGA) is enabled, 100 ns. is added to the Offset value

automatically.

♦ Initial Length of Test Bench: 1500 ns.

Leave the default values in the remaining fields.

8. Click Finish to complete the timing initialization.

9. The blue shaded areas that precede the rising edge of the CLOCK correspond to the Input

Setup Time in the Initialize Timing dialog box. Toggle the DIRECTION port to define the

input stimulus for the counter design as follows:

♦ Click on the blue cell at approximately the 300 ns to assert DIRECTION high so that the

counter will count up.

♦ Click on the blue cell at approximately the 900 ns to assert DIRECTION high so that the

counter will count down.

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

Note: For more accurate alignment, you can use the Zoom In and Zoom Out toolbar

buttons.

10. Save the waveform.

11. In the Sources window, select the Behavioral Simulation view to see that the test bench

waveform file is automatically added to your project.

12. Close the test bench waveform.

Create a Self-Checking Test Bench Waveform:

Add the expected output values to finish creating the test bench waveform. This transforms

the test bench waveform into a self-checking test bench waveform. The key benefit to a self-

checking test bench waveform is that it compares the desired and actual output values and

flags errors in your design as it goes through the various transformations, from behavioral

HDL to the device specific representation.

To create a self-checking test bench, edit output values manually, or run the Generate

Expected Results process to create them automatically. If you run the Generate Expected

Results process, visually inspect the output values to see if they are the ones you expected

for the given set of input values.

To create the self-checking test bench waveform automatically, do the following:

1. Verify that Behavioral Simulation is selected from the drop-down list in the Sources

window.

2. Select the counter_tbw file in the Sources window.

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

3. In the Processes tab, click the “+” to expand the Xilinx ISE Simulator process and double-

click the Generate Expected Simulation Results process. This process simulates the design

in a background process.

4. The Expected Results dialog box opens. Select Yes to annotate the results to the test

bench.

5. Click the “+” to expand the COUNT_OUT bus and view the transitions that correspond to

the Output Delay value (yellow cells) specified in the Initialize Timing dialog box.

6. Save the test bench waveform and close it. You have now created a self-checking test

bench waveform. Simulating Design Functionality

Verify that the counter design functions as you expect by performing behavior simulation as

follows:

1. Verify that Behavioral Simulation and counter_tbw are selected in the Sources window.

2. In the Processes tab, click the “+” to expand the Xilinx ISE Simulator process and double-

click the Simulate Behavioral Model process. The ISE Simulator opens and runs the

simulation to the end of the test bench.

3. To view your simulation results, select the Simulation tab and zoom in on the transitions.

The simulation waveform results will look like the following:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

Experiment No: 1 REALIZATION OF LOGIC GATES

AIM:

To write a VHDL program for Logic gates and simulate them by using XILINX 9.2i Soft

ware.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity gates is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

c,d,e,f,g,h,i : out STD_LOGIC);

end gates;

architecture Behavioral of gates is

begin

process(a,b)

begin

c<=a and b;

d<=a or b;

e<=not a;

f<=a nand b;

g<=a nor b;

h<=a xor b;

i<=a xnor b;

end process;

end Behavioral;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

OUTPUT WAVEFORMS (AFTER SIMULATION):

TRUTH TABLE:

a b c=a.b d=a+b e=a’ f=(a.b)’ g=(a+b)’ h=a xor b i=aΘb

0 0 0 1 1 1 0 0 1

0 1 0 1 1 1 0 1 0

1 0 0 1 0 1 0 1 0

1 1 1 0 0 0 1 0 1

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source” section below.

4. The next step in creating the new source is to add the behavioral description for the program.

5.Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the functionality of

the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

Experiment No: 2 Design of Full Adder using 3 modeling styles

ABSTRACT: To study and simulate Full adder circuit in three different modeling styles

using VHDL.

THEORY: A full adder is a combinational circuit that forms the arithmetic sum of input; it

consists of three inputs and two outputs. A full adder is useful to add three bits at a time but a

half adder cannot do so. In full adder sum output will be taken from X-OR Gate, carry output

will be taken from OR Gate.

PROCEDURE:

 The Full adder Design is entered through VHDL.

 The design is simulated by applying test vectors-a,b, c and observe the output sum,

carry.

 After simulation obtain the RTL, technology schematics and synthesis report.

 It is required to lock the pins and give timing constraints.

 Implement the design by passing the design by various stages by mapping, time

analysis and bit stream. For locking the pins write UCF file before implementation

and guide the same through option set control files. Output can be directly

programmed into target device FPGA.

VHDL PROGRAM FOR FULLADDER:

BEHAVIORAL STYLE

entity fulladderbeh is

Port (a,b,c : in std_logic;

sum,carry : out std_logic);

end fulladrbeh;

architecture Behavioral of fulladrbeh is

begin

process(a,b,c)

begin

if(a='0' and b='0' and c='0') then sum<='0';

carry<='0';

elsif(a='0' and b='0' and c='1') then sum<='1';

carry<='0';

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

elsif(a='0' and b='1' and c='0') then sum<='1';

carry<='0';

elsif(a='0' and b='1' and c='1') then sum<='0';

TIMING DIAGRAM:

carry<='1';

elsif(a='1' and b='0' and c='0') then sum<='1';

carry<='0';

elsif(a='1' and b='0' and c='1') then sum<='0';

carry<='1';

elsif(a='1' and b='1' and c='0') then sum<='0';

carry<='1';

else

sum<='1'; carry<='1';

end if;

end process;

end Behavioral;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

DATA FLOW MODELING

entity fulladder is

Port (a,b,c : in std_logic;

s,cout : out std_logic);

end fulladr;

architecture data of fulladr is

begin

sum<=a xor b xor cin;

cout<= (a and b) or (b and cin) or (cin and a);

end data;

STRUCTURAL STYLE

entity fullstru is

Port (a,b,cin : in std_logic;

sum,carry : out std_logic);

end fullstru;

architecture structural of fullstru is

signal c1,c2,c3:std_logic;

component xor_3

port(x,y,z:in std_logic;

u:out std_logic);

end component;

component and_2

port(l,m:in std_logic;

n:out std_logic);

end component;

component or_3

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

port(p,q,r:in std_logic;

s:out std_logic);

end component;

begin

X1: xor_3 port map (a, b, cin,sum);

A1: and_2 port map (a, b, c1);

A2: and_2 port map (b,cin,c2);

A3: and_2 port map (a,cin,c3);

O1: or_3 port map (c1,c2,c3,carry);

end structural;

LINKUP FOR STRUCTURAL MODELLING

//and gate//

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity and_2 is

Port (l,m : in std_logic;

n : out std_logic);

end and2;

architecture dataf of and2 is

begin

n<=l and m;

end dataf;

//or gate//

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity or_3 is

Port (p,q,r : in std_logic;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

s : out std_logic);

end or3;

architecture dat of or_3 is

begin

s<= p or q or r;

end dat;

//xor gate//

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity xor_3 is

Port (x,y,z : in std_logic;

u : out std_logic);

end xor_3;

architecture dat of xor_3 is

begin

u<=x xor y xor z;

end dat;

RESULT:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

Experiment No:3 3 TO 8 DECODER -74138

AIM:

To write a VHDL program for 3 to 8 Decoder and simulate it by using XILINX9.2i Soft

ware.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dc1 is

Port (en : in STD_LOGIC;

x : in STD_LOGIC_VECTOR (2 downto 0);

y : out STD_LOGIC_VECTOR (7 downto 0));

end dc1;

architecture Behavioral of dc1 is

begin

process(en,x)

begin

if en='0' then y<="00000000";

else

case x is

when "000"=>y<="00000001";

when "001"=>y<="00000010";

when "010"=>y<="00000100";

when "011"=>y<="00001000";

when "100"=>y<="00010000";

when "101"=>y<="00100000";

when "110"=>y<="01000000";

when "111"=>y<="10000000";

when others=>null;

end case;

end if;

end process;

end Behavioral;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

OUTPUT WAVEFORMS (AFTER SIMULATION):

TRUTH TABLE:

en X2 X1 X0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 x x x 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source” section below.

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

4. The next step in creating the new source is to add the behavioral description for the program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the functionality of

the program module.

10. Save the waveform.

RESULT:

The VHDL program for 3 to 8 Decoder is written and simulated by using XLINX9.2i version and the

Output is verified.

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Experiment No: 4

8 to 3 Encoder (with and without priority)

ABSTRACT: To study and simulate design of 8 to 3 Encoder (with and without priority)

using VHDL.

THEORY: 8 to 3 encoder has 8 inputs and only one output based on the select inputs (2n)

stress out one output n. Priority encoders are available in standard IC form and the TTL

74LS148 is an 8-to-3 bit priority encoder which has eight active LOW (logic “0”) inputs and

provides a 3-bit code of the highest ranked input at its output.

PROCEDURE:

 The 8 to 3 encoder Design is entered through VHDL.

 The design is simulated by applying test vectors- ENABLE_L, D_IN and observing

output D-OUT.

 After simulation obtain the RTL, technology schematics and synthesis report.

 It is required to lock the pins and give timing constraints.

 Implement the design by passing the design by various stages by mapping, time

analysis and bit stream. For locking the pins write UCF file before implementation

and guide the same through option set control files. Output can be directly

programmed into target device FPGA.

VHDL PROGRAM FOR 8 TO 3 ENCODER (with out priority):

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY ENCODER8_3 IS

PORT (ENABLE_L : IN STD_LOGIC;

D_IN: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

D_OUT: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END ENCODER8_3;

ARCHITECTURE ENCODER_ARCH OF ENCODER8_3 IS

BEGIN

PROCESS(ENABLE_L,D_IN)

BEGIN

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

IF (ENABLE_L = '1') THEN

D_OUT <= "000";

ELSE

CASE D_IN IS

WHEN "00000001" => D_OUT <= "000";

WHEN "00000010" => D_OUT <= "001";

WHEN "00000100" => D_OUT <= "010";

WHEN "00001000" => D_OUT <= "011";

WHEN "00010000" => D_OUT <= "100";

WHEN "00100000" => D_OUT <= "101";

WHEN "01000000" => D_OUT <= "110";

WHEN “10000000” => D_OUT <= "111";

WHEN OTHERS => NULL";

END CASE;

END IF;

END PROCESS;

END ENCODER_ARCH;

LOGIC DIAGRAM:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

D

INTERNAL DIAGRAM:

VHDL PROGRAM FOR 8 TO 3 ENCODER (with out priority):

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity V74x148 is

Port (EI_L: in std_logic;

I_L: in std_logic_vector(7 downto 0);

A_L: out std_logic_vector(2 downto 0);

EO_L,GS_L: out std_logic);

End V74x148;

Architecture behavioral of V74x148 id

Signal EI: std_logic;

Signal I: std_logic_vector(7 downto 0);

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

D

Signal EO,GS: std_logic;

Signal A: std_logic_vector(2 downto 0);

Begin

process(EI_L,I_L,EI,EO,GS,I,A)

variable j;integer range 7 downto 0;

begin

EI<= not EI_L;

I<= not I_L;

EO<=’1’;

GS<=’0’;

A<=”000”;

If (EI)=’0’ then EO<=’0’;

Else for j in 7 downto 0 loop

If I(j)=’1’ then

GS<=’1’; EO<=’0’; A<=conv_std_logic_vector(j,3);

Exit;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

D

TRUTH TABLE :

INPUTS

OUTPUTS

EI_L I0_L I1_L I2_L I3_L I4_L I5_L I6_L I7_L A2_L A1_L A0_L GS_L EO_L

1 X X X X X X X X 1 1 1 1 1

0 X X X X X X X 0 0 0 0 0 1

0 X X X X X X 0 1 0 0 1 0 1

0 X X X X X 0 1 1 0 1 0 0 1

0 X X X X 0 1 1 1 0 1 1 0 1

0 X X X 0 1 1 1 1 1 0 0 0 1

0 X X 0 1 1 1 1 1 1 0 1 0 1

0 X 0 1 1 1 1 1 1 1 1 0 0 1

0 0 1 1 1 1 1 1 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0

End if;

End loop;

End if;

EO_L<= not EO;

GS_L<= not GS;

A_L<= not A;

End process;

End behavioral;

RESULT:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

D

Experiment No: 5

8 x 1 Multiplexer-74151 and 1 x 4 De-multiplexer-74155

AIM:

To write a VHDL program for 8X1 Multiplexer and simulate it by using XILINX9.2i Soft

ware.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mul1 is

Port (sel : in STD_LOGIC_VECTOR (2 downto 0);

x : in STD_LOGIC_VECTOR (7 downto 0);

y : out STD_LOGIC);

end mul1;

architecture Behavioral of mul1 is

begin

process(sel,x)

begin

case sel is

when "000"=>y<=x(0);

when "001"=>y<=x(1);

when "010"=>y<=x(2);

when "011"=>y<=x(3);

when "100"=>y<=x(4);

when "101"=>y<=x(5);

when "110"=>y<=x(6);

when "111"=>y<=x(7);

when others=>null;

end case;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

D

end process;

end Behavioral;

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

OUTPUT WAVEFORMS (AFTER SIMULATION):

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

D

TRUTH TABLE:

sel2 sel1 sel0 X7 X6 X5 X4 X3 X2 X1 X0 Y

0 0 0 0 0 0 0 0 0 0 1 X0

0 0 1 0 0 0 0 0 0 1 0 X1

0 1 0 0 0 0 0 0 1 0 0 X2

0 1 1 0 0 0 0 1 0 0 0 X3

1 0 0 0 0 0 1 0 0 0 0 X4

1 0 1 0 0 1 0 0 0 0 0 X5

1 1 0 0 1 0 0 0 0 0 0 X6

1 1 1 1 0 0 0 0 0 0 0 X7

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source”

section below.

4. The next step in creating the new source is to add the behavioral description for the

program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the

functionality of the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

1 X 4 DE-MULTIPLEXER

AIM:

To write a VHDL program for 2X4 De-Multiplexer and simulate it by using XILINX9.2i Soft ware.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dem1 is

Port (sel : in STD_LOGIC_VECTOR (1 downto 0);

x : in STD_LOGIC;

y : out STD_LOGIC_VECTOR (3 downto 0));

end dem1;

architecture Behavioral of dem1 is

begin

process(x,sel)

begin

y<="0000";

case sel is

when "00"=>y(0)<=x;

when "01"=>y(1)<=x;

when "10"=>y(2)<=x;

when "11"=>y(3)<=x;

when others=>null;

end case;

end process;

end Behavioral;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

OUTPUT WAVEFORMS (AFTER SIMULATION):

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

TRUTH TABLE:

sel1 sel0 X Y3 Y2 Y1 Y0

0 0 A 0 0 0 A

0 1 A 0 0 A 0

1 0 A 0 A 0 0

1 1 A A 0 0 0

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source” section below.

4. The next step in creating the new source is to add the behavioral description for the program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the functionality of

the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

Experiment No: 6 4-BIT COMPARATOR-7485

AIM:

To write a VHDL program for 4-Bit Comparator and simulate it by using XILINX9.2i

Software.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity compare is

Port (A,B : in STD_LOGIC_VECTOR (3 downto 0);

EQ,NE,GT,GE,LT,LE : out STD_LOGIC);

end compare;

architecture Behavioral of compare is

begin

process(A,B)

begin

EQ<='0';NE<='0';GT<='0';GE<='0';LT<='0';LE<='0';

if A = B then EQ<='1';end if;

if A /= B then NE<='1';end if;

if A > B then GT<='1';end if;

if A >= B then GE<='1';end if;

if A < B then LT<='1';end if;

if A <= B then LE<='1';end if;

end process;

end Behavioral;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

OUTPUT WAVEFORMS (AFTER SIMULATION):

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

TRUTH TABLE:

COMPARING INPUTS OUTPUTS

A3,B3 A2,B2 A1,B1 A0,B0 A>B A<B A=B

A3>B3 X X X 1 0 0

A3<B3 X X X 0 1 0

A3=B3 A2>B2 X X 1 0 0

A3=B3 A2<B2 X X 0 1 0

A3=B3 A2=B2 A1>B1 X 1 0 0

A3=B3 A2=B2 A1<B1 X 0 1 0

A3=B3 A2=B2 A1=B1 A0>B0 1 0 0

A3=B3 A2=B2 A1=B1 A0<B0 0 1 0

A3=B3 A2=B2 A1=B1 A0=B0 0 0 1

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source”

section below.

4. The next step in creating the new source is to add the behavioral description for the

program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the

functionality of the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

Experiment No: 7 D-FLIPFLOP-7474

AIM:

To write a VHDL program for D-FLIP FLOP and simulate it by using XILINX9.2i Software.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dff1 is

Port (clk : in STD_LOGIC;

d : in STD_LOGIC;

q1 : out STD_LOGIC;

q2 : out STD_LOGIC);

end dff1;

architecture Behavioral of dff1 is

begin

process(d,clk)

begin

if(d='0'and clk='1') then

q1<='0';

q2<='1';

else if(d='1' and clk='1') then

q1<='1';

q2<='0';

end if;

end if;

end process;

end Behavioral;

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

OUTPUT WAVEFORMS (AFTER SIMULATION):

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

TRUTH TABLE:

clk d Q1 Q2

0 X U U

1 0 0 1

1 1 1 0

0 X Q0 Q0’

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source”

section below.

4. The next step in creating the new source is to add the behavioral description for the

program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the

functionality of the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Experiment No: 8 DECADE COUNTER-7490

AIM:

To write a VHDL program for Decade Counter and simulate it by using XILINX9.2i

Soft ware.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Counter is

port (clk: in STD_LOGIC;

reset: in STD_LOGIC;

q: out STD_LOGIC _VECTOR(3 downto 0));

end Counter;

architecture Behavioural of Counter is

begin

process(clk,reset)

variable qtemp: std_logic_vector(3 downto 0);

begin

if reset='1' then

qtemp:="0000";

else

if clk='1' then

if qtemp<9 then

qtemp:=qtemp+1;

else

qtemp:="0000";

end if;

end if;

q<=qtemp;

end if;

end process;

end Behavioural;

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

OUTPUT WAVEFORMS (AFTER SIMULATION):

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

TRUTH TABLE:

COUNT
OUTPUTS

QD QC QB QA

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source”

section below.

4. The next step in creating the new source is to add the behavioral description for the

program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the

functionality of the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Experiment No: 9

SHIFT REGISTERS-7495

AIM:

To write a VHDL program for Shift Register and simulate it by using XILINX 9.2i Soft ware.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity shift is

Port (C,SI : in STD_LOGIC;

SO : out STD_LOGIC);

end shift;

architecture Behavioral of shift is

signal tmp: std_logic_vector(7 downto 0);

begin

process (C)

begin

if (C'event and C='1') then

for i in 0 to 6 loop

tmp(i+1) <= tmp(i);

end loop;

tmp(0) <= SI;

end if;

end process;

SO <= tmp(7);

end Behavioral;

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

OUTPUT WAVEFORMS (AFTER SIMULATION):

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source” section below.

4. The next step in creating the new source is to add the behavioral description for the program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the functionality of

the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Experiment No: 10

8- BIT SERIAL IN-PARALLEL OUT AND PARALLEL IN-SERIAL OUT

ABSTRACT: To study and simulate SIPO and PISO using VHDL.

THEORY: In Serial In Parallel Out (SIPO) shift registers, the data is stored into the

register serially while it is retrieved from it in parallel-fashion. In Parallel In serial Out

(PISO) shift registers, the data is stored into the register parallel while it is retrieved from it

in Serial-fashion.

PROCEDURE:

 The SIPO AND PISO Design is entered through VHDL.

 The design is simulated by applying test vectors- i, clk and observing output

Dataout.

 After simulation obtain the RTL, technology schematics and synthesis report.

 It is required to lock the pins and give timing constraints.

 Implement the design by passing the design by various stages by mapping,

time analysis and bit stream. For locking the pins write UCF file before

implementation and guide the same through option set control files. Output

can be directly programmed into target device FPGA.

VHDL PROGRAM FOR SIPO:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SIPO is

Generic(N:integer :=8);

port(sin,clk :in STD_LOGIC;

sout : out STD_LOGIC);

end SIPO;

architecture SHIFT of SIPO is

component d_flip_flop is

port(D,clk :in STD_LOGIC;

Q,nQ : out STD_LOGIC);

end component d_flip_flop;

signal Z: std_logic_vector (N downto 0);

begin

z(0)<=sin;

Q1:for I in 0 to N-1 generate

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

d_flip_flopx:d_flip_flop port map(clk,z(i),z(i+1),open);

end generate;

sout<=z(8);

end SHIFT;

LINKUP FOR STRUCTURAL MODELLING

//D FLIPFLOP//

entity dff is

Port (data,clk,reset : in STD_LOGIC;output : out STD_LOGIC);

end dff;

architecture Behavioral of dff is

begin

process(clk)

begin

if(reset='1') then output<= '0';

elsif(clk'event and clk='1') then output<= data;

end if;

end process;

end Behavioral;

VHDL PROGRAM FOR PISO:

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity parallel_in_serial_out is

port(

clk : in STD_LOGIC;

reset : in STD_LOGIC;

load : in STD_LOGIC;

din : in STD_LOGIC_VECTOR(7 downto 0);

dout : out STD_LOGIC);

end parallel_in_serial_out;

architecture piso_arc of parallel_in_serial_out is

begin

piso : process (clk,reset,load,din) is

variable temp : std_logic_vector (din'range);

begin

if (reset='1') then

temp := (others=>'0');

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

elsif (load='1') then

temp := din ;

elsif (rising_edge (clk)) then

dout <= temp(7);

temp := temp(6 downto 0) & '0';

end if;

end process piso;

end piso_arc;

PIN DIAGRAM:

INTERNAL ARCHITECTURE OF FIFO:

RESULT

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Experiment No: 11

FIFO(FIRST IN FIRST OUT)

ABSTRACT: To study and simulate FIFO using VHDL.

THEORY: FIFOs (First In, First Out) are essentially memory buffers used to temporarily

store data until another process is ready to read it. As their name suggests the first byte

written into a FIFO will be the first one to appear on the output. Typically FIFOs are used

when you have two processes that operate and a different rate. A common example is a high

speed communications channel that writes a burst of data into a FIFO and then a slower

communications channel that read the data as need to send it at a slower rate. The FIFO

module has two settings that can be configured to adjust the width and depth of the FIFO.

The DATA_WIDTH variable adjusts the size of the DataIn and DataOut buses so that you can

write different sizes of bytes if needed and the FIFO_DEPTH variable adjusts how big the

internal memory of the FIFO is.

PROCEDURE:

 The FIFO Design is entered through VHDL.

 The design is simulated by applying test vectors- i, clk and observing output

Dataout.

 After simulation obtain the RTL, technology schematics and synthesis report.

 It is required to lock the pins and give timing constraints.

 Implement the design by passing the design by various stages by mapping,

time analysis and bit stream. For locking the pins write UCF file before

implementation and guide the same through option set control files. Output

can be directly programmed into target device FPGA.

VHDL PROGRAM FOR FIFO:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity fifo is

generic (depth : integer := 8); --depth of fifo

port (clk : in std_logic;

reset : in std_logic;

enr : in std_logic; --enable read,should be '0' when not in use.

enw : in std_logic; --enable write,should be '0' when not in use.

data_in : in std_logic_vector (7 downto 0); --input data

data_out : out std_logic_vector(7 downto 0); --output data

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

fifo_empty : out std_logic; --set as '1' when the queue is empty

fifo_full : out std_logic --set as '1' when the queue is full);

Timing diagram for WRITE operation:

Timing diagram for READ operation:

end fifo;

architecture Behavioral of fifo is

type memory_type is array (0 to depth-1) of std_logic_vector(7 downto 0);

signal memory : memory_type :=(others => (others => '0')); --memory for queue.

signal readptr,writeptr : integer := 0; --read and write pointers.

signal empty,full : std_logic := '0';

begin

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

fifo_empty <= empty;

fifo_full <= full;

process(Clk,reset)

--this is the number of elements stored in fifo at a time.

--this variable is used to decide whether the fifo is empty or full.

variable num_elem : integer := 0;

begin

if(clk'event and clk='1') then

if(reset = '1') then

data_out <= (others => '0');

empty <= '0';

full <= '0';

readptr <= 0;

writeptr <= 0;

num_elem := 0;

elsif(enr = '1' and empty = '0') then --read

data_out <= memory(readptr);

readptr <= readptr + 1;

num_elem := num_elem-1;

end if;

if(enw ='1' and full = '0') then --write

memory(writeptr) <= data_in;

writeptr <= writeptr + 1;

num_elem := num_elem+1;

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Timing diagram for reset operation :

end if;

--rolling over of the indices.

if(readptr = depth-1) then --resetting read pointer.

readptr <= 0;

end if;

if(writeptr = depth-1) then --resetting write pointer.

writeptr <= 0;

end if;

--setting empty and full flags.

if(num_elem = 0) then

empty <= '1';

else

empty <= '0';

end if;

if(num_elem = depth) then

full <= '1';

else

full <= '0';

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

end if;

end if;

end process;

end Behavioral;

RESULT :

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Experiment No: 12

MAC (Multiplier & Accumulator)

ABSTRACT: To study and simulate MAC using VHDL.

THEORY: the multiply–accumulate operation is a common step that computes the product

of two numbers and adds that product to an accumulator. The hardware unit that performs the

operation is known as a multiplier–accumulator (MAC, or MAC unit)

PROCEDURE:

 The MAC Design is entered through VHDL.

 The design is simulated by applying test vectors- l, m and observing output n.

 After simulation obtain the RTL, technology schematics and synthesis report.

 It is required to lock the pins and give timing constraints.

 Implement the design by passing the design by various stages by mapping,

time analysis and bit stream. For locking the pins write UCF file before

implementation and guide the same through option set control files. Output

can be directly programmed into target device FPGA.

VHDL PROGRAM FOR MAC:

entity multiplier is

Port (l,m : in STD_LOGIC_VECTOR (2 downto 0);

n : out STD_LOGIC_VECTOR (5 downto 0));

end multiplier;.

architecture Behavioral of multiplier is

component and1

Port (a,b : in STD_LOGIC;

c : out STD_LOGIC);

end component;

component hadder

port(i,j : in STD_LOGIC;

su,ca : out STD_LOGIC);

end component;

component fulladd

Port (d,e,f : in STD_LOGIC;

sum,carry : out STD_LOGIC);

end component;

component or1

Port (a1,b1 : in STD_LOGIC;

c1 : out STD_LOGIC);

end component;

signal p,q: std_logic;

signal r : std_logic_vector(8 downto 0);

signal s : std_logic_vector (3 downto 0);

signal si: std_logic_vector(3 downto 1);

signal sic: std_logic_vector(3 downto 1);

signal sumor: std_logic;

begin

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

l0: and1 port map (l(0),m(0),r(0));

l1: and1 port map (l(1),m(0),r(1));

l2: and1 port map (l(0),m(1),r(2));

l3: and1 port map (l(2),m(0),r(3));

l4: and1 port map (l(1),m(1),r(4));

l5:and1 port map (l(0),m(2),r(5));

l6: and1 port map (l(2),m(1),r(6));

l7: and1 port map (l(1),m(2),r(7));

l8: and1 port map (l(2),m(2),r(8));

n(0)<= r(0);

m1: hadder port map (r(1),r(2),n(1),s(1));

m2: hadder port map (s(1),r(3),si(1),sic(1));

m3: hadder port map (r(4),r(5),si(2),sic(2));

m4: hadder port map (si(1),si(2),n(2),s(2));

m5: hadder port map (sic(1),sic(2),si(3),sic(3));m8: or1 port map (s(2),si(3),sumor);

m6: fulladd port map (sumor,r(6),r(7),n(3),s(3));

m7: fulladd port map (s(3),sic(3),r(8),n(4),n(5));

end Behavioral;

LINKUP FOR STRUCTURAL MODELLING

//AND GATE//

entity and1 is

Port (a,b : in STD_LOGIC;c : out STD_LOGIC);

end and1;

architecture Behavioral of and1 is

begin

c<= a and b;

end Behavioral;

//OR GATE//

entity or1 is

Port (a1,b1 : in STD_LOGIC;c1 : out STD_LOGIC);

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

end or1;

architecture Behavioral of or1 is

begin

c1<= a1 or b1;

end Behavioral;

//HALF ADDER//

entity hadder is

Port (i,j : in STD_LOGIC;

su,ca : out STD_LOGIC);

end hadder;

architecture Behavioral of hadder is

begin

su<= i xor j;ca<= i and j;

end Behavioral;

//FULL ADDER//

entity fulladd is

Port (d,e,f : in STD_LOGIC;sum,carry : out STD_LOGIC);

end fulladd;

architecture Behavioral of fulladd is

component and1Port (a,b : in STD_LOGIC;c : out STD_LOGIC);

end component;

begin

sum <= d xor e xor f;carry <= ((d and e) or (e and f) or (f and d));

end Behavioral;

LOGIC DIAGRAM:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

TRUTH TABLE

RESULT:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Experiment No: 13

ALU DESIGN

AIM:

To write a VHDL program for Arithmetic and Logic Unit and simulate it by using XILINX

9.2i Soft ware.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity alu is

port

(

Input1, Input2 : in std_logic_vector(3 downto 0);

Operation : in std_logic_vector(2 downto 0);

Flag : out std_logic;

Result : out std_logic_vector(3 downto 0)

);

end entity alu;

architecture Behavioral of alu is

signal Temp: std_logic_vector(4 downto 0);

begin

process(Input1, Input2, Operation, temp) is

begin

Flag <= '0';

case Operation is

when "000" => -- res = in1 + in2, flag = carry = overflow

Temp <= (unsigned("0" & Input1) + unsigned(Input2));

Result <= temp(3 downto 0);

Flag <= temp(4);

when "001" => -- res = |in1 - in2|, flag = 1 if in2 > in1

if (Input1 >= Input2) then

Result <= (unsigned(Input1) - unsigned(Input2));

Flag <= '0';

else

Result <= (unsigned(Input2) - unsigned(Input1));

Flag <= '1';

end if;

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

when "010" =>

Result <= Input1 and Input2;

when "011" =>

Result <= Input1 or Input2;

when "100" =>

Result <= Input1 xor Input2;

when "101" =>

Result <= not Input1;

when "110" =>

Result <= not Input2;

when others => -- res = in1 + in2 + 1, flag = 0

Temp <= (unsigned("0" & Input1)) + (unsigned(not Input2) + 1);

Result <= temp(3 downto 0);

Flag <= temp(4);

end case;

end process;

end architecture Behavioral;

BLOCK DIAGRAM:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

RTL SCHEMATIC DIAGRAM:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

OUTPUT WAVEFORMS (AFTER SIMULATION):

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source” section below.

4. The next step in creating the new source is to add the behavioral description for the program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the functionality of

the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

ADDITIONAL EXPXPERIMENTS

Experiment No: 1

UNIVERSAL SHIFT REGISTERS

AIM:

To write a VHDL program for Universal Shift Register and simulate it by using XILINX 9.2i

Soft ware.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity univ1 is

Port (D : in STD_LOGIC_VECTOR (3 downto 0);

CLK,RST : in STD_LOGIC;

SIR,SIL : in STD_LOGIC;

S : in STD_LOGIC_VECTOR (1 downto 0);

Q : out STD_LOGIC_VECTOR (3 downto 0));

end univ1;

architecture Behavioral of univ1 is

begin

process(CLK, RST) is

variable REG : std_logic_vector(3 downto 0);

begin

if (RST = '0') then

REG := (others => '0');

elsif rising_edge(clk) then

case S is

when "11" =>

REG := D;

when "01" =>

REG := SIR & REG(3 downto 1);

when "10" =>

REG := REG(2 downto 0) & SIL;

when others =>null;

end case;

end if;

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Q <= REG;

end process;

end Behavioral;

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

OUTPUT WAVEFORMS (AFTER SIMULATION):

TRUTH TABLE:

RESET S1 S0 CLOCK SIL SIR data QA QB QC QD

A B C D

0 X X X X X X X X X 0 0 0 0

1 X X 0 X X X X X X QA0 QB0 QC0 QD0

1 1 1 1 X X a b c d a b c d

1 0 1 1 X a X X X X a QAN QBN QCN

1 1 0 1 a X X X X X QBN QCN QDN a

1 0 0 X X X X X X X QA0 QB0 QC0 QD0

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source”

section below.

4. The next step in creating the new source is to add the behavioral description for the

program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8.Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the

functionality of the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

Experiment No: 2

4-BIT COUNTER

AIM:

To write a VHDL program for 4-Bit Counter and simulate it by using XILINX 9.2i Soft ware.

SOFTWARE:

1. ILINX 9.2i

2. ISE Simulator

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity count1 is

Port (CLOCK : in STD_LOGIC;

DIRECTION : in STD_LOGIC;

COUNT : out STD_LOGIC_VECTOR (3 downto 0));

end count1;

architecture Behavioral of count1 is

signal count_int : std_logic_vector(3 downto 0) := "0000";

begin

process (CLOCK)

begin

if CLOCK='1' and CLOCK'event then

if count_int < "1111" then

count_int <= count_int + 1;

else

count_int<="0000";

end if;

end if;

end process;

COUNT <= count_int;

end Behavioral;

DEPARTMENT OF ECE WISE

DICD LAB MANUAL

BLOCK DIAGRAM:

RTL SCHEMATIC DIAGRAM:

OUTPUT WAVEFORMS (AFTER SIMULATION):

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

TRUTH TABLE:

COUNT
OUTPUTS

QD QC QB QA

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

0 0 0 0 0

PROCEDURE:

1. Start the Xilinx ISE software by Double clicking on the Icon or

Start → All Programs → Xilinx ISE 9.2i → Project Navigator

2. Create a new project by Selecting File > New Project...

3. Create a VHDL source file, then, continue either to the “Creating a VHDL Source”

section below.

4. The next step in creating the new source is to add the behavioral description for the

program.

5. Place the cursor just below the begin statement within the program architecture.

6. Save the file by selecting File → Save.

7. When the source files are complete, check the syntax of the design to find errors and types.

8. Verify the Functionality using Behavioral Simulation.

9. Create a test bench waveform containing input stimulus you can use to verify the

functionality of the program module.

10. Save the waveform.

RESULT:

DEPARTMENT OF ECE WISE

 DICD LAB MANUAL

	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
	DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
	Starting the ISE Software:
	 Start → All Programs → Xilinx ISE 8.2i → Project Navigator
	Accessing Help

	Create a New Project:
	To create a new project:

	Create an HDL Source:
	Using Language Templates (VHDL):
	Tile
	VHDL → Synthesis Constructs → Coding Examples → Counters → Binary →

	Final Editing of the VHDL Source:
	Checking the Syntax of the New Counter Module:
	Design Simulation:
	Create a Self-Checking Test Bench Waveform:
	AIM:
	SOFTWARE:
	PROGRAM:
	TRUTH TABLE:
	PROCEDURE:
	VHDL PROGRAM FOR FULLADDER:
	TIMING DIAGRAM:
	RESULT:

	8 to 3 Encoder (with and without priority)
	PROCEDURE:
	VHDL PROGRAM FOR 8 TO 3 ENCODER (with out priority):
	LOGIC DIAGRAM:
	VHDL PROGRAM FOR 8 TO 3 ENCODER (with out priority): (1)
	TRUTH TABLE :
	RESULT:

	8 x 1 Multiplexer-74151 and 1 x 4 De-multiplexer-74155
	AIM:
	SOFTWARE:
	PROGRAM:
	BLOCK DIAGRAM:
	OUTPUT WAVEFORMS (AFTER SIMULATION):

	1 X 4 DE-MULTIPLEXER
	AIM:
	SOFTWARE:
	PROGRAM:
	BLOCK DIAGRAM:
	OUTPUT WAVEFORMS (AFTER SIMULATION):
	RESULT:
	AIM: (1)
	SOFTWARE: (1)
	PROGRAM: (1)
	BLOCK DIAGRAM: (1)
	OUTPUT WAVEFORMS (AFTER SIMULATION): (1)
	RESULT: (1)

	SHIFT REGISTERS-7495
	8- BIT SERIAL IN-PARALLEL OUT AND PARALLEL IN-SERIAL OUT
	PROCEDURE:
	VHDL PROGRAM FOR SIPO:
	VHDL PROGRAM FOR PISO:
	PIN DIAGRAM:
	RESULT
	FIFO(FIRST IN FIRST OUT)
	PROCEDURE: (1)
	VHDL PROGRAM FOR FIFO:

	MAC (Multiplier & Accumulator)
	PROCEDURE:
	VHDL PROGRAM FOR MAC:
	LOGIC DIAGRAM:
	RESULT:

	ALU DESIGN
	AIM:
	SOFTWARE:
	PROGRAM:
	ADDITIONAL EXPXPERIMENTS

	UNIVERSAL SHIFT REGISTERS
	AIM:
	SOFTWARE:
	PROGRAM:
	BLOCK DIAGRAM:
	OUTPUT WAVEFORMS (AFTER SIMULATION):
	RESULT:

	4-BIT COUNTER
	AIM:
	SOFTWARE:
	PROGRAM:
	BLOCK DIAGRAM:
	OUTPUT WAVEFORMS (AFTER SIMULATION):
	RESULT:

